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ABSTRACT

The spectral turbulence model of Lorenz, as modified for surface quasigeostrophic dynamics by Rotunno
and Snyder, is further modified to more smoothly approach nonlinear saturation. This model is used to in-
vestigate error growth starting from different distributions of the initial error. Consistent with an often
overlooked finding by Lorenz, the loss of predictability generated by initial errors of small but fixed absolute
magnitude is essentially independent of their spatial scale when the background saturation kinetic energy
spectrum is proportional to the25/3 power of the wavenumber. Thus, because the background kinetic energy
increases with scale, very small relative errors at long wavelengths have similar impacts on perturbation error
growth as large relative errors at short wavelengths. To the extent that this model applies to practical me-
teorological forecasts, the influence of initial perturbations generated by butterflies would be swamped by
unavoidable tiny relative errors in the large scales.
The rough applicability of the authors’ modified spectral turbulence model to the atmosphere over scales

ranging between 10 and 1000 km is supported by the good estimate that it provides for the ensemble error
growth in state-of-the-art ensemble mesoscale model simulations of two winter storms. The initial-error
spectrum for the ensemble perturbations in these cases has maximum power at the longest wavelengths. The
dominance of large-scale errors in the ensemble suggests that mesoscale weather forecasts may often be
limited by errors arising from the large scales instead of being produced solely through an upscale cascade
from the smallest scales.

1. Introduction

In a seminal paper, Lorenz (1969, hereafter L69)
showed that limits to the predictability of atmospheric
circulations can arise from unobservable small-scale mo-
tions. Subsequent investigations using more sophisticated
turbulencemodels (Leith 1971; Leith andKraichnan 1972;
M!etais and Lesieur 1986) confirmed that the rapid upscale
cascade of small-scale initial error imposes finite limits on
the predictability of turbulent flows whose kinetic energy
spectrum is proportional to the 25/3 power of the hori-
zontal wavenumber k. The loss of predictability in numer-
ical weather forecasts has, therefore, often been attributed
to the upscale growth of small unresolved perturbations,
particularly in forecasts of atmosphericmotions at scales
less than about 400 km where observations show the
atmospheric kinetic energy spectrum follows a k25/3

power law.

As horizontal wavelengths increase beyond 400 km,
the atmospheric kinetic energy spectrum gradually shifts
from a k25/3 to a k23 power law (see Fig. 5). Evidence
from turbulence theory and from simulations of atmo-
spheric flows suggests that upscale error growth is less
rapid and less important in the longer-wavelength k23

regime. In particular, Tribbia and Baumhefner (2004)
found that the role of small-scale errors is primarily to
perturb the baroclinically unstable scales, which then
grow rapidly and dominate the loss of large-scale predict-
ability. Nevertheless, upscale error propagation through
the mesoscale, with its k25/3 spectrum, likely remains the
key factor perturbing the baroclinically unstable scales and
ultimately producing the loss of predictability at large
scales. Our focus in the remainder of this paper will
therefore be on the propagation of initial-condition errors
through the mesoscale (i.e., on mesoscale predictability).
Although they only roughly approximate the dy-

namics of the true atmosphere, the calculations in L69
suggest that errors at wavelengths between 100m and
1 km may destroy the predictability of motions with
scales on the order of 10 km in just a few hours. Yet
mesoscale numerical weather prediction models are
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now routinely used to generate 48-h forecasts that in-
clude features on scales O(10) km. The justification for
these attempts to forecast small-scale features at such
long lead times is largely based on the proposition of
Anthes et al. (1985) that phenomena generated by the
interaction of the large-scale flow with known small-
scale forcing (such as topography) or through the dy-
namics of the large-scale flow itself (such as fronts)
inherit the extended predictability of the large-scale flow.
According to this viewpoint, the large scale can im-
prove mesoscale predictability by providing initial con-
ditions capable of correctly generating uninitialized
small-scale features. Recent analyses of the spectral
structure of initial errors in pseudo-operational meso-
scale forecasts, however, suggest that the absolute errors
in the larger scales exceed those in the small scales (Bei
and Zhang 2007; Durran et al. 2013) and that error
growth can be closer to a quasi-uniform amplification of
the errors at all wavenumbers at which the error is un-
saturated rather than an upscale error cascade (Mapes
et al. 2008; Durran et al. 2013).
Given this evidence for the potential importance of

initial errors at large scales, our first goal is to investigate
the response of the L69 model and improvements
thereof (Rotunno and Snyder 2008, hereafter RS08) to
a range of hypothetical initial-error distributions. Our
second goal is to compare the error growth in the im-
proved Lorenz model with initial conditions represen-
tative of those computed using ensemble forecasts with
high-resolution mesoscale models. We conclude by as-
sessing the likely practical importance of large- and small-
scale errors in the context of the improved Lorenzmodel.

2. Initial-error growth in an improved turbulence
model

The original L69 model uses the two-dimensional
barotropic vorticity equation (2DV) to represent ho-
mogeneous isotropic turbulence. Lorenz also assumed
that the saturation kinetic energy spectrum for the tur-
bulence described by his model follows a k25/3 power
law, whereas the actual saturation kinetic energy spec-
trum generated by two-dimensional barotropic motions
varies in proportion to k23. This inconsistency was re-
moved in subsequent studies with more sophisticated
turbulence models (Leith 1971; Leith and Kraichnan
1972; M!etais and Lesieur 1986) and more recently by
RS08 through an elegant modification of the underlying
dynamics in Lorenz’s model. RS08 extended Lorenz’s
analysis to describe homogeneous isotropic turbulence
governed by surface quasigeostrophic theory (SQG),
which does generate a saturation kinetic energy spec-
trum following a k25/3 power law (Held et al. 1995).

Comparing their more consistent SQG model with
Lorenz’s barotropic formulation, RS08 concluded that
‘‘the basic-state spectrum is the determining factor in
the error-energy evolution with the dynamical model
(SQG or 2DV) playing a secondary role.’’ The similarity
of the upscale error growth in L69 and RS08 for the case
of a k25/3 saturation kinetic energy spectrum is illus-
trated in Fig. 1, which shows the evolution of the error-
energy spectrum at nondimensional times in the interval
0 # t # 1. Figure 1a is essentially identical to Fig. 1a of
RS08 and will serve as the departure point for our sub-
sequent analysis. We believe Fig. 1b provides the first
presentation of the same case from the well-known L69
model in a quantitative graphical format. In both the
SQG and barotropic models, the error expands upscale
as progressively longer wavelengths become saturated,
with somewhat faster upscale propagation in the baro-
tropic case. The errors remain small in those scales that
are not yet saturated, although there is more error at
a given unsaturated wavenumber in the barotropic case
than in SQG model.
Before proceeding with further analysis, we make an

additional simple improvement to the models used in
L69 and RS08. The evolution of the error in L69 and
RS08 is governed by the second-order ordinary differ-
ential equation

d2Zk

dt2
5 !

n

l51
Ck,lZl , (1)

in which C is a constant matrix determining the in-
teractions between various length scales, n is the total
number of spectral bands, and Zk is the ensemble mean
of the kinetic energy of the perturbations KE0 about the
ensemble velocity field, integrated with respect to ln(k)
over the spectral band at two-dimensional horizontal
wavenumber k. In the following, we refer to Zk/k as the
KE0 spectral density, or simply the ‘‘error’’ (m3 s22).
The derivation of (1) is complex and covered thor-

oughly in L69 and RS08, who show that

Ck,l 5 !
n

m51
Bk2m,l2mN

2
mXm , (2)

where Nm is the nondimensional wavenumber of the
mth spectral band, Xm is the saturation kinetic energy
integrated over the spectral band at wavenumber Nm,
andBk,l is determined by the triad interactions involving
wavenumbers in spectral band l that produce forcing in
spectral band k. The influence of the slope of the satu-
ration kinetic energy spectrum on error growth appears
in (2) through the factor Xm, whereas the factor Bk,l
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carries the direct influence of the dynamical formulation
(SQG or 2DV).1

Nonlinearity is included in the L69 and RS08 models
by abruptly cutting off the growth ofZkwhen it achieves
saturation by enforcing the inequality

Zk(t)#Xk . (3)

This treatment of nonlinear saturation does not correctly
capture the gradual decrease in the growth rate of Zk that
must occur as it approaches saturation. Therefore, we
impose a simple nonlinear feedback that forces Zk to
smoothly asymptote toXk. Onemay replace the system of
n second-order differential equations shown in (1) by the
equivalent system of 2n first-order differential equations

dYk

dt
5 !

n

l51
Ck,lZl,

dZk

dt
5

!
Xk

Xk

"
Yk . (4)

Perhaps the simplest nonlinear feedback that can be
added to force the time tendencies of theZk smoothly to
zero as they approach their saturation thresholds Xk is
given by

dYk

dt
5 !

n

l51
Ck,lZl,

dZk

dt
5

!
Xk 2Zk

Xk

"
Yk . (5)

Except for the arbitrary treatment of nonlinear satura-
tion, the derivations in L69 andRS08 are based on linear
dynamics, and their derivations are fully applicable to
(5) because it linearizes to (1).

We use (5) for our subsequent analysis and will refer
to this as the smooth-saturation Lorenz–Rotunno–
Snyder (ssLRS) model. The evaluations of the coef-
ficients Ck,l and the numerical integration of (3) were
performed usingMATLAB. Except for the cases in Fig. 1,
adjacent wavenumbers in our truncation differ by a factor
of r5

ffiffiffi
2

p
, which is twice the spectral resolution used in

L69 and RS08. We retain 24 wavenumbers, truncating our
expansion at the same nondimensional wavenumber as
RS08 (who retained 12 wavenumbers). Additional details
about the numerics are given in the appendix.
Figure 2a shows the ssLRS error evolution for the

same case plotted in Fig. 1a. The solution is similar to
that given by RS08, but smoother because of the finer
spectral resolution. Moreover, the growth slows no-
ticeably just before the errors saturate. This delay in
reaching saturation is qualitatively similar to that in the
more sophisticated turbulence models shown in Fig. 6 of
Leith (1971), Fig. 13 of Leith and Kraichnan (1972), and
Fig. 2 of M!etais and Lesieur (1986). Nevertheless, we
do not wish to suggest our treatment of nonlinear satu-
ration makes the ssLRS model the theoretical equal of
these turbulence models; it simply removes an artificial
discontinuity in the growth rates computed using L69
and RS08 by allowing a smooth approach to saturation.
Consider now alternative initial-error structures.

Figure 2b shows an initial white-noise spectrum of suf-
ficient amplitude to saturate the error in the smallest
retained scale; similar initial states have been used in
many predictability studies. The white-noise spectrum is
proportional to the two-dimensional wavenumber k, so
the initial errors in the longer wavelengths are very small,
and as a consequence, upscale error growth via the suc-
cessive saturation of larger scales is almost identical to
that in Fig. 2a.

FIG. 1. Perturbation kinetic energy spectral density as a function of wavenumber k at nondimensional times t5 0,
0.1, . . . , 1.0 for (a) surface quasigeostrophic dynamics and (b) the barotropic vorticity equation. Following RS08,
these calculations are performed using 12 modes with r 5 2 and linear growth rates until saturation.

1 The dynamical formulation also influences the slope of the
saturation kinetic energy spectrum.
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The error evolution for a case with all initial error at
the largest scale is shown in Fig. 3a. The initial KE0

spectral density at the largest-scale Z1/1 was set to Xn/n,
making its magnitude identical to that placed at the
smallest scale in the case shown in Fig. 2a. The upscale
error growth along the saturation curve is very similar in
both cases, particularly after time 0.1. Evidently, very
small relative errors in the large-scale initial conditions are
capable of producing upscale error propagation at rates
similar to that induced by gross inaccuracies in the initial
specification of the smallest scales. Further discussion of
the case shown in Fig. 3a will be provided in section 4.
Another simple initial-error distribution is one with

uniform relative error at all scales. Figure 3b shows
growth of Zk/k when the initial errors are 1% of the
saturation KE0 spectral density Xk/k at all scales. The
error growth in this situation is substantially different
from those in the preceding cases. With uniform initial

relative errors, the smallest scales all saturate by t 5 0.1
and subsequent growth is largely through the amplifi-
cation of the error at each unsaturated wavenumber and
only secondarily upscale. Given the substantial differ-
ence in error growth between that shown in Fig. 3b and
the other cases, one naturally asks what the initial-error
distribution might be in actual weather forecasts. That is
the focus of the next section.

3. Comparison of the ssLRS model with error
growth in ensemble forecasts

a. Growth of the KE0 spectral density in
mesoscale model ensembles

As detailed in Gingrich (2013), 100-member ensem-
bles of two East Coast winter storms were constructed
using an ensemble Kalman filter (EnKF) and integrated

FIG. 2. KE0 spectral density Zk/k as a function of wavenumber k at nondimensional times t 5 0, 0.1, . . . , 1.0 for
initial error saturated at the largest wavenumber and (a) zero elsewhere and (b) following a white-noise spectrum.
These and subsequent calculations are performed using 24 modes with r5

ffiffiffi
2

p
and a smooth approach to nonlinear

saturation.

FIG. 3. As in Fig. 2, but with initial error (a) only at the largest scale and having the same magnitude as that at the
smallest scale in Fig. 2a and (b) equal to 0.01Xk/k, corresponding to a 1% relative error at all scales.
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for 36-h forecasts with the U.S. Navy’s Coupled Ocean–
Atmosphere Mesoscale Prediction System (COAMPS)
(Hodur 1997). In these simulations, the innermost nest
was convection permitting with a horizontal resolution
of 5 km. The spectral density of the total kinetic energy
dKE was computed on the 5-km grid in the same manner
as Durran et al. (2013), and similar to that of Skamarock
(2004), but without time and vertical averaging.
At a given vertical level, let ui,j,m and yi,j,m denote the

zonal and meridional velocities at horizontal mesh point
(i, j) for ensemble memberm. To avoid the influences of
the nested grid boundaries, the outermost 10 grid points
on each side of the nest were excluded in all calculations.
Following Errico (1985), the linear trend defined by the
two endpoints of the velocity fields across each east–
west line of grid cells was removed for each j and m. In
this way, periodicity was enforced in the fields prior to
their transformation to spectral space, removing spuri-
ous energy from the smallest scales [see Fig. A2 of
Skamarock (2004)]. Then, the discrete Fourier trans-
form was applied to each uj,m and yj,m. Denoting the
transform of a function f by f̂, and the complex con-
jugate by f*, the kinetic energy spectral density for each
j and m was computed as

dKEj,m(
~k)5

Dx
2Nx

[ûj,m(
~k)ûj,m* ( ~k)1 ŷj,m(

~k)ŷj,m* ( ~k)] . (6)

Here ~k is the (one dimensional) zonal wavenumber,
Dx 5 5 km is the model grid spacing, and Nx is the total
number of grid points along the ith coordinate included
in the transform. Then,dKEj,m( ~k) was averaged over both
j and m to give the ensemble- and meridional-averaged
one-dimensional total kinetic energy spectrum dKE( ~k).

The solid curves in Fig. 4 show dKE( ~k) at 500 hPa every
6 h throughout the two ensemble forecasts initialized for
1200 UTC 4 February and 1200UTC 25December 2010;
these times are during the periods of cyclogenesis for
each storm. Only those wavelengths greater than 7Dx are
shown; 7Dx is the scale beyond which numerical dissipa-
tion was deemed to significantly damp perturbations in
mesoscale models by Skamarock (2004). The initialized
total kinetic energy spectrum is omitted.2

In both events, the ensemble maintained a broad
spectral region between wavelengths of approximately
100–400 km in which the observed k25/3 slope (Nastrom
and Gage 1985) was captured quite well.3 At wave-
lengths greater than approximately 400 km, the spectral
slope appears to steepen with increasing forecast lead
time, and particularly in the 25 December case, tends
toward a k23 slope. On the other hand, the spectral slope
in the region with wavelengths between approximately
70 and 400 km remains fairly constant.
The perturbation kinetic energy spectral density

dKE0 is calculated in the same manner as dKE, except that
ui,j,m and yi,j,m are replaced with u0i,j,m 5 ui,j,m 2 ui,j and
y0i,j,m 5 yi,j,m 2 yi,j, where f indicates the average of
f over all ensemble members. Figure 4 also shows the
perturbation kinetic energy spectra.As apparent in Fig. 4,
the initial perturbation kinetic energy spectrum is not

FIG. 4. Ensemble- and meridional-averaged total (solid lines) and perturbation (dashed lines) kinetic energy
spectra at 500hPa shown every 6h (line colors given in the legend) for theCOAMPSensemble initialized (a) 1200UTC4
Feb and (b) 1200UTC 25Dec 2010. Only those wavelengths greater than 7Dx are shown; the spectrum for the initialdKE
is omitted.

2As discussed in Gingrich (2013), more dKE is initialized in the
ensemble forecasts than is maintained after 6 h of integration,
likely because of physical imbalances in the EnKF analysis in-
crements producing the initial conditions.

3 The Nastrom and Gage (1985) data are largely collected at
levels between 9 and 14 km.Our simulations also show k25/3 energy
spectra at these higher levels.
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maximized at the smallest scales. Instead the EnKF
data-assimilation procedure distributed the ensemble
perturbations such that their energy was maximized at
the largest resolved scales. Further, the error grew sig-
nificantly at the largest scales in the first 6 h of the
forecast, without waiting for the upscale error propa-
gation that characterizes the error growth in Figs. 2 and
3a. The error growth in Fig. 4 is more similar to that in
Fig. 3b.

b. The dimensional ssLRS model

To quantitatively compare the ssLRS model’s error
growth with that from the COAMPS ensembles, it is
necessary to assign appropriate dimensional values to
the ssLRS variables. L69 dimensionalized his model by
defining a length scale L and a saturation kinetic energy
density scale E. We follow this approach, choosing L as
the wavelength of the wavenumber-1 zonal mode at
458N, which is 28 300 km; E is chosen to make Xk/k
match observations at a wavelength near the large-scale
end of the portion of the atmospheric spectrum over
which a k25/3 power law is evident. Figure 5 shows one-
dimensional kinetic energy spectra computed from air-
craft data collected by Nastrom and Gage (1985) as
plotted by Lindborg (1999); setting E to match these
data at a wavelength of 400 km gives the value E 5 2 3
105m3 s22. As also apparent from the data in Fig. 5, the
atmospheric KE spectrum transitions from k23 at long
wavelengths to k25/3 over a range of wavelengths cen-
tered at about 400 km; our saturation energy spectrum is
therefore specified as switching from k23 to k25/3 at
a wavelength of 400 km.4

The initial errors in the dimensional ssLRS model
were specified by setting Zk(0)/k to 0.01Xk/k for the
small scales following the k25/3 spectrum and then ex-
trapolated along that same k25/3 line through the longer
wavelengths. This is a simple choice giving initial errors
close to those in the COAMPS ensembles at the longer
wavelengths, although it underestimates Zk(0)/k in the
short wavelengths. As will be discussed in section 4, the
initial errors in the short wavelengths are of no impor-
tance in determining the error at 6 h and beyond.

The evolution of the KE0 spectral density in the di-
mensional ssLRS model and the COAMPS ensemble
forecast from 1200 UTC 25 December 2010 are com-
pared in Fig. 6. Given the extreme simplicity of the
ssLRS model (only 24 degrees of freedom), the agree-
ment with the COAMPS ensemble is surprisingly good,
with relatively similar orientations and growth of the
KE0 density spectra toward the saturation kinetic energy
spectrum at all times t $ 6 h. It should be emphasized
that the time scale was not set directly, but rather is
determined as LE21/2. The good agreement in the time
evolution of Zk/k and dKE0 arises from our specification
ofL andE, and from the dynamics underlying the ssLRS
and COAMPS models.
Although the turbulence closure assumption in the

ssLRSmodel is complex, the remaining model dynamics
are quite simple, and their influence on the error growth
may be assessed by comparing Fig. 7 with Fig. 6a. These
four panels show the pairs of results obtained with either
the SQG or barotropic vorticity equations in combina-
tion with smooth nonlinear saturation [using (5)] or with
a sharp cutoff of the linear growth rate [using (3) and
(4)]. While smooth nonlinear saturation does not make
a dramatic difference, it does clearly slow the error
growth near saturation and thereby contributes to the
similarity between the KE0 spectra in the turbulence

FIG. 5. Atmospheric kinetic energy density spectrum as a func-
tion of one-dimensional horizontal wavenumber adapted from
Skamarock (2004), which is in turn based on data from Nastrom
and Gage (1985) as plotted by Lindborg (1999). Data point used to
determine the saturation kinetic energy density scale lies at the
intersection of the red dashed lines.

4 The ssLRS model expresses spectra as a function of two-
dimensional horizontal wavenumber k, whereas the spectra in
the COAMPS simulations (and the observations) are expressed as
a function of one-dimensional wavenumber ~k. If the kinetic energy
density spectrum follows a power law kp for the 2D spectral
wavenumber k5 ( ~k2 1 ~l 2)1/2, the 1D spectrum follows the same
power law ~kp for p # 21. In particular, 1D spectra differ from 2D
spectral for the case p525/3 by a factor of 0.71. Scaling the ssLRS
spectra so that the saturation spectrum matches the observations
accounts for this constant factor.
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models and the COAMPS ensembles. Replacing SQG
dynamics by the original L69 2D barotropic vorticity
equation has only a modest impact, except that the er-
rors in the largest wavelengths do grow more rapidly
with barotropic vorticity dynamics. As already noted,
one additional factor that can dramatically influence the
error growth is the initial-error distribution, and that will
be the topic of the next section.

4. Why butterf lies do not matter

Adding or subtracting initial errors from selected
scales is computationally quite expensive when work-
ing with large ensembles such as those that generated
the data for Fig. 5, but it is trivial in the ssLRS model.

Figure 8a shows the effect of removing all initial er-
ror from scales smaller than 400 km in the preceding
ssLRS simulation. Fromhour 6 onward, there is virtually
no difference between the errors shown in Fig. 8a and
the case shown in Fig. 6a, which has initial errors in all
scales. Data from the complimentary experiment in
which all initial error is removed from the scales larger
than 400 km, while the small-scale errors remain un-
changed, is plotted in Fig. 8b; the error growth is
clearly much slower than that shown in Fig. 8a. For
example, consider the errors at kc 5 6 3 1025m21 (a
wavelength of about 100km). When initial errors are
only present at wavelengths greater than 400 km (Fig.
8a), Z(kc) grows to about X(kc)/3 in 6 h, but it takes
about 3 times as long for Z(kc) to reach the same value

FIG. 6. (a) KE0 spectral densityZk/k as a function of wavenumber k for the dimensional ssLRSmodel every 6 h (line
colors given in the legend). Black curve shows the saturation spectrum Xk/k. (b) Identical to Fig. 4b, except that the
curves for the total kinetic energy spectral density at each individual time are replaced by their average over hours
12–36 and plotted as the thick black line.

FIG. 7. As in Fig. 6a, except (a) smooth nonlinear saturation is not used, (b) surface quasigeostrophic dynamics are replaced by the
barotropic vorticity equation and smooth nonlinear saturation is not used, and (c) surface quasigeostrophic dynamics are replaced by the
barotropic vorticity equation.
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when the errors are initially confined to scales less than
400 km (Fig. 8b).
The initial errors in Zk(0) in the case shown in Fig. 8b

were 1% of their saturation value. An additional ex-
periment was performed in which all initial error was
zero, except at the smallest (6.9 km) scale, at which the
error was saturated. The error growth in that case (not
shown) is very similar to that plotted in Fig. 8b. This
experiment, together with the cases discussed in con-
nection with Fig. 8, imply that initial small-scale errors,
including those at length scales far larger than the size of
butterflies, do not matter when minor relative errors are
present in the largest scales. The basic explanation for
the difference between the cases in Figs. 8a and 8b is that
downscale error propagation in turbulence with k25/3

saturation KE spectra is very fast. As discussed in both
L69 and RS08 (see p. 1073), this can be appreciated by
examining the structure of Ck,l given in the appendix
(Tables A1 and A2), which are for the case n 5 12 and
truncated at wavenumber 9 for brevity. The coefficients
above the diagonal give the rate at which error growth at
a given wavenumber is ‘‘accelerated’’ by errors at larger
wavenumbers (shorter wavelengths). Conversely, the
coefficients below the diagonal show the ‘‘accelera-
tions’’ owing to the presence of errors at smaller wave-
numbers (longer wavelengths). The values below the
diagonal are much larger than those above, implying
that downscale error propagation is much more rapid
than upscale propagation.
An illustration of the relative unimportance of small-

scale error was actually included in L69 but seems to
have been largely overlooked, both in the conclusions of
L69 and in most subsequent research. In Lorenz’s fa-
mous experiment A, initial error was placed only at the

shortest retained wavelength.5 In his less well-known
experiment B, the same absolute initial error was placed
at the longest retained wavelength. Lorenz found that
predictability was lost just as rapidly in both experi-
ments and commented ‘‘Evidently, when the initial er-
ror is small enough, its spectrum has little effect upon the
range of predictability.’’
Experiment B was repeated using the ssLRS model

with smooth nonlinear saturation; the result was pre-
viously presented in Fig. 3a and may be compared to the
case with identical initial absolute error at the smallest
scale (experimentA), whose results are plotted in Fig. 2a.
By a nondimensional time of 0.2, the initial large-scale
error in experiment B has spread rapidly down scale
and saturated all wavenumbers greater than a non-
dimensional value of approximately 400. The small-scale
errors at this same time are similar, although slightly
larger in experiment A, where the error at time 0.2 is
saturated at all wavenumbers greater than 300. Down-
scale propagation rapidly spreads the initial error in ex-
periment B to smaller scales, which quickly saturate and
trigger an upscale energy cascade. This process is further
illustrated in Fig. 9, which compares the evolution of the
error in experiments A and B at early nondimensional
times 0 # t # 0.2.
As mentioned in connection with Fig. 1 and empha-

sized in RS08, the slope of the saturation KE spectrum
[specified viaXm in (2)] is the key factor determining the

FIG. 8. As in Fig. 6a, except the initial error is removed at wavelengths (a) less than 400 km and (b) greater than
400 km.

5Actually Lorenz placed the initial error at the second-to-
shortest wavelength. Because he extended his model to much
smaller scales, the initial error was placed at a much shorter
wavelength than those considered here.
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error-energy propagation, while the direct influence of
the underlying dynamics [SQG or 2DV, incorporated
through Bk,l in (2)] is secondary. This is further illus-
trated in Fig. 10, which shows the results of experiments
A andB for systems governed by the barotropic vorticity
equation with either k25/3 or k23 spectra. Figures 10a
and 10b show the results for k25/3, and closely approxi-
mate Lorenz’s original experiments A and B.6 The re-
sults are very similar to those shown for the ssLRS
model in Fig. 2a and Fig. 3a, except that the errors grow
slightly faster with 2DV dynamics. The error may grow
upscale faster in the 2DV case because total energy is
predominately transferred upscale by 2DV dynamics,
whereas it is predominately transferred downscale by
SQG dynamics (Gkioulekas and Tung 2007).
The error growth in both experiments A and B for the

cases with the k23 saturationKE spectra is very different
from that obtained for k25/3. In contrast to Fig. 10a, the
upscale error growth in Fig. 10c does not evolve pri-
marily through the saturation of progressively longer
wavelengths. Instead the maximum error occurs at
a wavenumber kmax quite far from saturation (i.e., Zkmax

lies far below Xkmax ).
7 The influence of the slope of the

saturation KE spectra is even more dramatic in experi-
ment B. As shown in Fig. 10d, the initial errors spread
downscale much more slowly than those for the k25/3

case, and there is no spatial scale at which the error has
achieved saturation before the final nondimensional
time (t 5 1). The maximum error in Fig. 10d grows by
less than a factor of 100, whereas it grows by roughly

a factor of 104 in the cases shown in the other three
panels of Fig. 10. The weak downscale error growth for
the k23 spectrum is associated with a very substantial
reduction in the values below the diagonal of the co-
efficient matrix C relative to those for the k25/3 spectrum
(cf. the bottom rows in Tables 1 and 3 in RS08).
Experiment B has interesting implications for re-

searchers attempting to determine the source of initial
error in forecasts of small-scale atmospheric phenom-
ena. Even if the initial error is confined to scales at the
long-wavelength end of the k25/3 KE spectrum (about
500 km), an individual examining errors in a case like
experiment B could mistakenly conclude they origi-
nate at the smallest resolved scales because those are
the scales at which the relative error first becomes
nontrivial.

5. Conclusions

L69 demonstrated that the predictability of certain
turbulent systems with k25/3 kinetic energy spectra
cannot be extended beyond some finite threshold by
reducing the initial-condition errors to any value greater
than zero. A key factor limiting the predictability of
such systems is the upscale cascade of initial errors,
conceivably originating at arbitrarily small scales with
arbitrarily rapid eddy turnover times. The possibility
that weather forecasting may be limited by perturba-
tions as trivial as the flapping of butterfly wings has
captured the imagination of the general public.8 Yet this
focus on the possible effects of small-scale initial errors
has overshadowed another equally important property

FIG. 9. As in (a) Fig. 2a (experiment A) and (b) Fig. 3a (experiment B), but for nondimensional times
t 5 0, 0.025, . . . , 0.2.

6Unlike L69, we continue to use smooth nonlinear saturation and
higher spectral resolution with a cutoff at L69’s nondimensional
wavenumber 12.

7 See also the discussion of Fig. 1b in RS08

8 L69 actually discusses perturbations generated by a slightly
larger creature: the seagull.
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of the L69 model—namely, the rapid downscale error
propagation that also occurs in systems with k25/3 ki-
netic energy spectra. Very small initial errors in the large
scales rapidly propagate downscale to the shortest re-
tained wavelengths. The errors in the shortest wave-
lengths saturate, and after a brief period the subsequent
upscale error growth is similar to what would have oc-
curred if the error was limited to the smallest scales at
the outset.
As evident from experiment B in L69, but largely

overlooked since, a small absolute error in the KE0

spectral density produces almost the same loss in pre-
dictability no matter what its scale. Since the back-
ground saturation kinetic energy density is much bigger
at longer wavelengths, very small relative errors in the
large scales can have the same impact on predictability
as saturated errors in the small scales. For example,
consider a relative error of 100% in the KE0 spectral
density at a wavelength of 10 km. Assuming a k25/3

spectrum, the same absolute error will produce a rela-
tive error at 400 km of [(2p/10)/(2p/400)]25/3 5 0.2%.
Since this is a relative error in the square of the velocity

times known factors, comparisons of the relative error at
each scale can be applied directly to velocities. Thus,
according to L69, RS08, and the ssLRS models, 0.2%
errors in velocities around nominal scales of 400 km
would have a similar impact on predictability as 100%
errors in velocities at scales around 10 km. If one pushes
the comparison well past the limits of validity of the
ssLRS model and imagines that butterflies all over the
world are flapping in coordination to generate a 100%
relative error at a wavelength of 10 cm, a roughly equiv-
alent impact on predictability would be exerted by a tiny
1029% relative error at a wavelength of 400km. In any
real-world event, the contributions of butterflies to uncer-
tainties in initial conditions would be completely dwarfed
by errors in the larger scales.
These estimates are of course obtainedwith the ssLRS

model and subject to the limitations of that model. The
ssLRS model is a very highly simplified representation
of the actual dynamics governing atmospheric flows, and
it is not as theoretically advanced as later turbulence
models (Leith and Kraichnan 1972; M!etais and Lesieur
1986). Nevertheless, it proved capable of estimating the

FIG. 10. As in Fig. 2a (experimentA) and Fig. 3a (experiment B), except the dynamics are for the barotropic vorticity
equation. The saturation spectrum is proportional to (a),(b) k25/3 and (c),(d) k23.
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evolution of the ensemble error growth in simulations of
two East Coast snow storms with surprising fidelity (see
Fig. 6). A key step required to obtain these good esti-
mates was to initialize the ssLRS model with an error
spectrum whose amplitude increased with increasing
wavelength in agreement with the initial perturbation
kinetic energy spectra in the EnKF-generated COAMPS
ensembles. This type of initial-error structure differs
significantly from those dominated by small-scale error or
white noise but is consistent with recent studies of en-
sembles and near-twin experiments in which all initial
states were produced by actual data assimilation algo-
rithms (Bei and Zhang 2007; Durran et al. 2013), as op-
posed to those generated by the addition of arbitrarily
chosen perturbations.
The impact of large-scale initial errors in the

COAMPS ensembles and the ssLRS model suggests
a need to revisit the idea that mesoscale motions typi-
cally inherit extended predictability from the large-scale
flow. Mesoscale motions are indeed generated as large-
scale circulations create fronts or interact with small-
scale features such as topography, but there is no guarantee
that the large scales can be specified with sufficiently
small relative errors to ensure the correct mesoscale
response. Previous research has identified instances where
very small differences in the large-scale flow rapidly pro-
duced significant differences in the mesoscale response to

flow over topography (Nuss and Miller 2001; Reinecke
and Durran 2009) and the position of the rain–snow line
(Durran et al. 2013).More extensive use ofwell-calibrated
ensemble forecasts may provide one way of addressing
the uncertainty associated with initial errors at all
scales.
The comparison of the ssLRS model with the

COAMPS ensembles was limited to scales ranging be-
tween 40 and 1000 km by the extent and numerical res-
olution of the COAMPS inner nest. This could well be
the range of scales over which the ssLRS model most
closely matches the atmosphere. The surface quasi-
geostrophic dynamics, onwhich the ssLRSmodel is based,
do not include baroclinic instability, which is a key factor
in large-scale error growth (Tribbia andBaumhefner 2004;
Hakim 2005). The ssLRSmodel is also unable to correctly
describe the dynamics of convective clouds, which have
relatively limited predictability (Hohenegger and Sch€ar
2007; Weisman et al. 2008) and dominate the dynamics
of small-scale atmospheric motions in many important
regions of the globe. The ssLRSmodel describes motions
that are horizontally isotropic and homogeneous, and
neither of these assumptions holds in the atmosphere.
Nevertheless, its ability to reasonably approximate the
error growth in ensemble forecasts generated by a state-
of-the-art mesoscale model does offer a measure of em-
pirical validity for the ssLRS model and for similar

TABLEA1. Coefficients ofCk,l for the 2DVdynamics with a k25/3 spectrum using r5 2 and 12 total wavenumbers. Only the coefficients for
0 # k, l # 9 are shown for conciseness.

k 1 2 3 4 5 6 7 8 9

1 0.20 0.26 0.07 0.02 0.00 0.00 0.00 0.00 0.00
2 2.86 0.45 1.80 0.23 0.05 0.01 0.00 0.00 0.00
3 13.38 10.22 21.10 8.73 0.68 0.13 0.02 0.00 0.00
4 44.9 41.5 33.1 212.6 34.1 1.9 0.4 0.1 0.0
5 133.0 130.4 120.2 101.3 261.9 117.8 5.3 1.0 0.2
6 372.5 370.5 363.1 334.2 298.1 2237.7 375.1 14.2 2.6
7 1010 1010 1004 984 904 851 2805 1131 37
8 2688 2687 2686 2671 2616 2404 2373 22528 3280
9 7055 7059 7055 7053 7013 6867 6307 6494 27542

TABLE A2. As in Table A1, but for SQG dynamics.

k 1 2 3 4 5 6 7 8 9

1 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.18 0.18 0.30 0.01 0.00 0.00 0.00 0.00 0.00
3 8.49 4.34 21.10 2.16 0.02 0.00 0.00 0.00 0.00
4 35.59 26.43 14.77 29.78 10.84 0.05 0.00 0.00 0.00
5 118.1 103.4 76.7 47.8 247.9 44.3 0.15 0.01 0.00
6 350.8 329.0 287.8 213.3 148.4 2187.0 158.9 0.40 0.02
7 980 951 892 780 578 443 2646 523 1.07
8 2648 2607 2530 2372 2075 1536 1285 22063 1619
9 7002 6952 6846 6642 6229 5448 4032 3629 26246
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spectral turbulence models that stimulated much of the
early research on atmospheric predictability.
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APPENDIX

Some Details of the MATLAB Model

We used MATLAB to evaluate the elements in the
C coefficient matrix and to integrate the differential
equation given in (5) governing the error evolution. The
difficult part of the implementation involves the evaluation
of Ck,l, and that is the focus of the following discussion.
Consider two interacting modes whose two-dimensional
horizontal wavenumber vectors K and L have magni-
tudesK andL, and letM5 jK2Lj. Equation (42) of L69
gives Ck,l defined via L69’s (41) as a function of the two-
dimensional integral of the functions B1(K/M, L, M, 1)
and B2(K/M, L/M, 1).
RS08’s Fig. A1 shows contour plots of B1 and B2, il-

lustrating that B1(S, S, 1) and B2(S, S, 1) both amplify
rapidly as S increases. This appears to be related to
a strong singularity in the integral in (28) of L69 in the
limit K / L, and it makes the numerical integration of
B1(K/M, L/M, 1) and B2(K/M, L/M, 1) difficult when
K and L are identical and large. We performed these
integrations using the MATLAB function quad2d with
a relative error tolerance of 23 1023 and the maximum
number of function evaluations limited at 1 000 000.
The resulting Ck,l values appear in Tables A1 and A2,

which may be compared with Tables 1 and 4 of RS08,
respectively. These tables are for a case with 12 non-
dimensional wavenumbers, although for conciseness,
only the first 9 are shown in Tables A1 and A2. Fol-
lowing L69 and RS08, there is a factor of 2 difference
between adjacent wavenumbers,A1 and the coefficient of
c in L69’s (52) was set to 0.702 31. The agreement with
RS08 is generally very good, but not perfect (except for

C9,2 in Table A2, for which the corresponding value in
RS08 may include a typo). Our results were identical to
four decimal places when the maximum number of
function evaluations was reduced to 50 000, but when
using either 50 000 or 1 000 000 as the limit on the
maximum number of function evaluations, MATLAB
issued warnings that the integral failed a global error
test for just the integrals with the two highest wave-
number pairs. This warning could be eliminated by
relaxing the relative error tolerance to 0.01, but that
also changes the entries in the tables, moving them
away from agreement with RS08. During these in-
tegrations, the quad2d flag to treat singularities was set
to true, and we believe the numbers given here repre-
sent the best available estimates for Ck,l, although it
also appears that some minor numerical aspects of the
L69 model are difficult to pin down very accurately
with absolute confidence.
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