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ABSTRACT

The partial reflection of mountain waves at the tropopause has been studied extensively for its contribution

to downslope windstorms, but its impact on orographic precipitation has not been addressed. Here linear

theory and numerical simulations are used to investigate how the tropopause affects the vertical structure of

mountain waves and, in turn, orographic precipitation. Relative to the no-tropopause case, wave-induced

ascent above thewindward slope of a two-dimensional ridge is found to be enhanced or diminished depending

on the ratio of the tropopause height to the vertical wavelength of the mountain waves—defined here as the

‘‘nondimensional tropopause height’’ Ĥ. In idealized simulations of flow over both two-dimensional and

three-dimensional ridges, variations in Ĥ are found to modulate the precipitation rate by roughly a factor of

2 under typical atmospheric conditions. The sensitivity of precipitation to Ĥ is related primarily to the depth

of windward ascent but also to the location and strength of leeside descent, with significant impacts on the

distribution of precipitation across the range (i.e., the rain-shadow effect). Using a modified version of Smith

and Barstad’s orographic precipitation model, variations in Ĥ are found to produce significant rain-shadow

variability in the Washington Cascades, perhaps explaining some of the variability in rain-shadow strength

observed among Cascade storms.

1. Introduction

The amount and spatial distribution of orographic

precipitation depend to a large degree on how the to-

pography modifies the airflow above it (e.g., Rotunno

andHouze 2007). For example, convective precipitation

can occur over windward slopes when conditionally

unstable air is forced upward by the topography (e.g.,

Kirshbaum and Durran 2004; Medina et al. 2010). Con-

versely, when stable air encounters a tall topographic

barrier, the flow can become ‘‘blocked,’’ causing ascent

and precipitation to shift upstream (e.g., Houze et al.

2001; Medina and Houze 2003; Jiang 2003; Colle 2004).

In many cases, however, convection and blocking are

minimal and the airflow is approximately linear, with

patterns of ascent and precipitation determined pri-

marily by terrain-induced internal gravity waves (i.e.,

‘‘mountain waves’’) (e.g., Smith 1979; Garvert et al. 2007;

Siler et al. 2013).

According to linear theory, the behavior of mountain

waves is governed by the vertical structure of winds and

static stability (e.g., Queney 1960). At the interface of

vertical layers with different wind speeds and/or static

stabilities, mountain waves can be partially reflected,

significantly altering the flow field (Eliassen and Palm

1961). Yet while this effect has been studied extensively

in the context of downslope wind storms, (e.g., Klemp

and Lilly 1975; Lilly 1978; Durran 1986), its impact on

orographic precipitation has largely been overlooked.

One notable exception is the recent paper by Barstad

and Schüller (2011), in which the authors used an ex-

tension of the linear model of Smith and Barstad (2004,

hereafter SB04) to simulate orographic precipitation in

the presence of two tropospheric layers with different

wind speeds and microphysical time scales. However,

this study did not consider how orographic precipitation

is affected by the abrupt change in stability at the tro-

popause, which is well known to cause mountain-wave

reflection (e.g., Klemp and Lilly 1975; Worthington and

Thomas 1997).

In this paper, therefore, we consider how orographic

precipitation is affected by the reflection of mountain

waves at the tropopause. We begin in section 2 with
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a two-dimensional linear analysis of ascent above the

windward slope of a two-dimensional sinusoidal ridge.

We find that low-level ascent is either enhanced or di-

minished depending on the ratio of the tropopause

height to the vertical wavelength of themountain waves.

We then approximate the precipitation generated by

linear mountain waves over an isolated ridge and in-

vestigate how this responds to changes in wind speed,

tropospheric stability, and tropopause height. In section 3,

we perform a series of numerical simulations using a

nonhydrostatic, nonlinear model, the results of which are

found to be broadly consistent with our linear analysis

from section 2. In section 4, we use our own modified

version of the SB04 model to illustrate how wave re-

flection by the tropopause may account for some of

the variability in precipitation patterns observed among

storms in the Washington Cascades. We conclude with

a summary and discussion of our results in section 5.

2. Linear theory

a. The effect of a tropopause on windward ascent

We begin with a linear analysis of the vertical velocity

field for a single Fourier component in the x–z plane,

w(x, z)5 ŵ(z)eikx , (1)

for which the surface topography consists of an infinite

series of sinusoidal ridges of the form

h(x)5 h0e
ikx . (2)

Using the Boussinesq approximation, the linear, invis-

cid, steady-state vertical velocity field is governed by the

one-dimensional Helmholtz equation,

d2ŵ

dz2
1 l2ŵ5 0, (3)

where l2 is the so-called Scorer parameter, defined as

l25
N2

U2
2

1

U

d2U

dz2
2 k2 , (4)

withU(z) representing the speed of the background flow

and N(z) the Brunt–Väisälä frequency.
Here we focus on the case of a two-layer atmosphere,

consisting of a troposphere with constant static stabilityN,

capped by an infinitely deep stratosphere with constantNs.

For now we assume that U is constant throughout both

layers. Applying the lower boundary condition,

w(x, 0)5U
dh

dx
, (5)

along with the conventional radiation and matching con-

ditions (e.g., Klemp and Lilly 1975), the solution to (3)

within the troposphere is found to be

ŵ(z)5 iUkh0(C
1eimz1C2e2imz) , (6)

where

m5

�
N2

U2
2 k2

�1/2

(7)

is the tropospheric vertical wavenumber, and the con-

stants C6 are given by

C6 5
(�61)e7imH

(�1 1)e2imH 1 (�2 1)eimH
. (8)

In (8), H is the height of the tropopause, and

�5m/ms , (9)

or the ratio of wavenumbers across the tropopause.

Assuming k . 0, the terms exp(imz) and exp(2imz) in

(6) represent upward- and downward-propagating waves

with a vertical wavelength of

lz5
2p

m
. (10)

Because our primary interest is orographic precipita-

tion, for now we focus on the vertical structure ofw over

the windward slope, where the bulk of condensation

occurs. For the terrain profile described by (2), the

steepest windward slope is located at xu 5 3p/2k, above

which, from (1) and (6),

w(xu, z)5A

"
cosmz2

(12 �2) sin4pĤ

2(�2 cos22pĤ1 sin22pĤ)
sinmz

#
,

(11)

whereA5Ukh0 is the wave amplitude in the absence of

a tropopause (i.e., � 5 1), and Ĥ is a nondimensional

tropopause height, defined as

Ĥ5
H

lz
. (12)

The impact of the tropopause on windward ascent is

represented by the second term inside the parentheses in

(11). In the no-tropopause limit �/ 1, w(xu, z) behaves

like cos(mz), with ascent at the surface giving way to

descent above a quarter vertical wavelength (z 5 lz/4).

However, when � 6¼ 1, the solution includes an additional

sinmz term, the sign of which is determined by the value

of Ĥ. At low levels [0, z(lz/4)] important for orographic
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precipitation, sinmz and cosmz have the same sign.

Therefore, ascent is enhanced in this layer if sin4pĤ, 0,

or equivalently, if n2 (1/2), 2Ĥ, n, where n is a posi-

tive integer. From (12), this condition is met when the

tropopause height is a bit less than an integer multiple of

a half vertical wavelength. On the other hand, low-level

ascent is diminished when n, 2Ĥ, n1 (1/2)—that is,

when the tropopause is a bit higher than an integer mul-

tiple of a half vertical wavelength.

b. Physical interpretation

To develop some intuition for the physics behind (11),

it is instructive to think of the troposphere as a kind of

Fabry–Pérot interferometer, with w(xu, z) representing

the interference pattern from an infinite series of waves

trapped between the surface (which acts as a total re-

flector) and the tropopause (which acts as a partial re-

flector). At the tropopause, reflection is governed by the

physical requirement that ŵ and dŵ/dzmatch across the

interface1 (Eliassen and Palm 1961). For an upward-

propagating wave eimz, these matching conditions take

the form

eimz 1 re2imz 5 teims
z

meimz 2mre2imz 5mste
im

s
z

)
at z5H , (13)

where r and t are coefficients representing the ampli-

tudes of the reflected and transmitted waves. Solving

these equations for r yields

r52r0e
i4pĤ , (14)

where

r05
12 �

11 �
. (15)

This implies that any incident wave at the tropopause is

related to its reflection by

eimz
z}|{upward

/2r0e
2i(mz24pĤ)

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{downward

. (16)

Imposing the same conditions for surface reflections

(where t 5 0) gives r 5 21, implying that incident and

reflected waves are governed by

e2imz
zfflffl}|fflffl{downward

/ 2eimz
zfflffl}|fflffl{upward

. (17)

Applying (16) and (17) iteratively to an initial terrain-

induced wave of the form A exp(imz), the resulting in-

terference pattern is found to be

w(xu, z)5A

�
eimz 1 �

‘

n51

(r0e
i4pĤ)n(eimz 2 e2imz)

�
, (18)

which is equivalent to (11), but in the form of an infinite

geometric series of upward- and downward-propagating

waves.

To understand the consequences of (18), let us con-

sider two specific cases in detail: Ĥ5 7/8, which represents

the midpoint of an interval over which low-level ascent is

enhanced, and Ĥ5 9/8, which represents the midpoint of

an interval over which low-level ascent is diminished. The

contributions to w(xu, z) from the first several reflected

waves are shown for both cases in Fig. 1.

The case Ĥ5 7/8 is shown in Fig. 1a. The wave with the

largest amplitude, A cosmz, represents the terrain-

induced wave (i.e., wave 1). According to (16), the

partial reflection of this wave at the tropopause results in

a downward-propagatingwave, r0A sin(mz), that enhances

low-level ascent (wave 2). Wave 2 is in turn reflected by

the surface, producing another wave equal to r0A sin(mz)

that enhances ascent even further (wave 3). The partial

reflection of wave 3 produces a downward-propagating

wave equal to r20A cosmz (wave 4), but this wave is offset

by its reflection (wave 5), which is equal in amplitude but

1808 out of phase from wave 4.

Continuing this line of reasoning, a pattern of alternat-

ing sines and cosines emerges, whereby each downward-

propagating wave of the form cos(mz) is canceled by its

reflection, while each downward-propagating wave of

the form sin(mz) is reinforced by its reflection. The co-

efficients of the sin(mz) terms form a geometric series,

2 �
‘

n50

(21)n11r2n11
0 , (19)

which sum to give

w(xu, z)5A

 
cosmz1

2r0
11 r20

sinmz

!
. (20)

Combining (15) and (20) yields

w(xu, z)5A

�
cosmz1

12 �2

11 �2
sinmz

�
, (21)

which is the same result given by (11).

Repeating this exercise for the Ĥ5 9/8 case (Fig. 1b),

we find that each reflectedwave of the form sinmz is 1808
out of phase with its counterpart in the Ĥ5 7/8 case. Thus,

1 Pressure must match at the interface. In our case, U and dU/dz

match across the interface, so the linearized x-momentum equation

implies that dŵ/dz also matches.
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whereas the initial reflected wave is equal to r0A sin(mz)

in the previous case, here its sign is reversed, implying a

reduction in low-level ascent. Following the same pro-

cedure as in the previous case, we find that

w(xu, z)5A

�
cosmz2

12 �2

11 �2
sinmz

�
. (22)

In the examples above, the impact of Ĥ on wind-

ward ascent has a straightforward physical interpreta-

tion, since in both cases the initial reflected wave takes

the form 6sinmz. However, the general case is not

fundamentally different. For an arbitrary tropopause

height, the initial reflected wave is given by (16) as

2r0A exp[2i(mz2 4pĤ)], which can be decomposed into

two (real) parts: 2cos4pĤ cosmz and 2sin4pĤ sinmz.

The first of these terms is proportional to cosmz, and is

therefore canceled by its reflection from the surface.

However, the second term, which is proportional to

sinmz, enhances low-level ascent when sin4pĤ, 0, and

weakens it when sin4pĤ. 0, just as in (11). Thus, even

when the initial reflected wave is not of the form sin(mz),

it contains a sin(mz) component that alters low-level as-

cent just the same.

It is therefore clear that whether w(xu, z) is enhanced

or diminished near the surface depends only on how the

initial terrain-induced wave, A cos(mz), is reflected by

the tropopause. When the tropopause height is a bit less

than an integer multiple of a half vertical wavelength,

as in the Ĥ5 7/8 case, the reflected wave contains a

1sinmz component, which acts to enhance low-level

ascent. On the other hand, when the tropopause height

is a bit greater than an integer multiple of a half vertical

wavelength, as in the Ĥ5 9/8 case, the reflected wave

contains a 2sinmz component, which acts to diminish

low-level ascent.

c. The effect of a tropopause on precipitation

Thus far we have used linear theory to investigate how

the presence of a tropopause affects windward ascent

for a single Fourier component. Motivating this analysis

was an implicit assumption that the depth and magni-

tude of windward ascent are fundamentally related to the

amount of orographic precipitation. Here we explore this

connection more tangibly, using a few simple assump-

tions to approximate the total precipitation rate from

saturated flow over an idealized two-dimensional ridge.

The goal of this exercise is to develop a qualitative un-

derstanding of the ways in which changes in wind speed,

stability, and tropopause height affect orographic pre-

cipitation, which will prove helpful for interpreting the

numerical results presented in the next section.

To incorporate precipitation within a linear frame-

work, it is necessary to account for the effects of latent

FIG. 1. Contributions to w(xu, z) from upward- (blue) and downward- (red) propagating waves given (a) Ĥ5 7/8 and (b) Ĥ5 9/8. Within

the troposphere, partial reflection by the tropopause and total reflection by the surface result in an infinite series of waves, of which only

those with amplitude r20A or greater are shown. The order of waves in the series is indicated by the circled numbers, beginning with the

terrain-induced wave,A cos(mz). Waves 2 and 3 reinforce each other, enhancing low-level ascent in (a) and diminishing it in (b). Waves 4

and 5 offset each other, and their net contribution to w(xu, z) is therefore zero. Stratospheric waves result from the partial transmission of

upward-propagating tropospheric waves across the tropopause.
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heating from condensation. One simple way of doing

this (e.g., Rotunno and Ferretti 2001; SB04) is to replace

N with an ‘‘effective static stability,’’N 0, which we assume

to be constant within the troposphere. Since in reality the

distribution of latent heating is not uniform within the

troposphere, it is perhaps best to think of N 0 as a free

parameter, tuned to achieve the best agreement between

linear theory and observations/numerical simulations.

Nevertheless, previous studies provide some indication of

the factors that determine N 0. If the troposphere were

saturated everywhere, we might expect N 0 to be close to

the troposphere-mean moist Brunt–Väisälä frequency,

Nm 5
1

H

ðH
0
Nm(z) dz , (23)

with Nm given by Lalas and Einaudi (1973) as

N2
m 5

g

T

�
dT

dz
1Gm

��
11

Lq

RT

�
2

g

11 q

dq

dz
, (24)

where g is the acceleration of gravity, T(z) is temperature,

Gm(z) is the moist adiabatic lapse rate, L is the latent heat

of vaporization, q(z) is themixing ratio of water vapor, and

R is the specific gas constant for dry air. In reality, de-

scending regions in the lee are often subsaturated, result-

ing in an abrupt increase in stability from Nm to N as a

parcel passes over the ridge (e.g., Barcilon and Fitzjarrald

1985). However, idealized simulations performed by

Jiang (2003) suggest that subsaturated regions may not

have much effect onN 0, implying thatN0’Nm may still

hold. In the next section, we present numerical results

that are broadly consistent with the notion thatN0 ’Nm,

except when the lower troposphere approaches convec-

tive instability (Fig. 7b).

We begin our precipitation analysis with linear theory

as before, assuming a two-layer atmosphere with con-

stant U and a saturated troposphere, flowing over an

isolated ‘‘witch-of-Agnesi’’ ridge of the form

h(x)5
h0a

2

a21 x2
, (25)

where h0 is the ridge height and a is the half-width. In

this case,w(x, z) can be found within the troposphere by

replacing h0 in (6) with the Fourier transform of (25),

ĥ(k)5
h0a

2
e2jkja , (26)

and taking the inverse transform, given by

w(x, z)5 iUh0a

ð‘
0
(C1eimz 1C2e2imz)ke2kaeikx dk .

(27)

In general, a closed-form expression for w(x, z) does not

exist owing to the dependence of m on the horizontal

wavenumber k [see (7)]. However, if the ridge is broad

enough that N 0a/U � 1, the dominant wavenumbers in

(27) satisfy the hydrostatic condition, k2�N 02/U2, and the

solution within the troposphere can be approximated as

w(x, z)52
Uh0a

(a21 x2)2

"
2ax cosmz1

�(a22 x2)2 ax(12 �2) sin4pĤ

�2 cos22pĤ1 sin22pĤ
sinmz

#
, (28)

where

m5N0/U (29)

is the hydrostatic vertical wavenumber,

Ĥ5
1

2p

HN0

U
(30)

is the hydrostatic nondimensional tropopause height,

and2

�’
N

Ns

. (31)

As proof of the relevance of our earlier analysis to the

present isolated ridge, note that at the point x 5 2a,

which lies one-half width upwind of the crest, (28)

simplifies to

w(2a,z)5
Uh0
2a

"
cosmz2

(12�2)sin4pĤ

2(�2 cos22pĤ1sin22pĤ)
sinmz

#
,

(32)

which matches the expression for w(xu, z) for the single

Fourier component (11) to within a constant factor.

To estimate the precipitation rate under saturated

conditions, let us assume, following SB04, that the con-

densation rate S can be approximated as

2N 0 determines the phase shift between the ground and the

tropopause and is, therefore, a deep-layer quantity. In contrast, �

determines the strength of reflection due to the change in stability

at the tropopause and is, therefore, a local quantity. Since Nm ’ N

in the upper troposphere, where moisture is scarce, � ’ N/Ns, not

N 0/Ns. This approximation is further supported by the numerical

simulations presented in the next section.
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S(x, z)’ S0e
2z/H

ww(x, z) , (33)

where Hw is the moisture-scale height and S0 is the

condensation per unit vertical displacement at the sur-

face. Let us further assume—very crudely—that total

precipitation at the surface is equal to the vertical in-

tegral of condensation upstream of the crest:

Pest5

ð‘
0

ð0
2‘

S(x, z) dx dz . (34)

In nature, moisture tends to be concentrated in the

lower troposphere, implying that

e2H/H
w � 1. (35)

As a result, the stratospheric component of w can be

neglected in (33). Combining (28), (33), and (34), we

arrive at the following estimate for precipitation:

Pest5
S0HwUh0

11 Ĥ
2

w

"
12 Ĥw

(12 �2) sin4pĤ

2(�2 cos22pĤ1 sin22pĤ)

#
, (36)

where Ĥw 5HwN
0/U is a nondimensional moisture-

scale height, which determines the extent to which

condensation depends on mountain-wave dynamics.3

To understand the full implications of (36), it is helpful

first to consider the limit �/ 1 in which the tropopause

vanishes. In this case, the quantity within parentheses

approaches unity, and (36) simplifies to

Pest5
S0HwUh0

11 Ĥ
2

w

. (37)

Since we are specifically interested in the relationship

betweenmountain-wave dynamics and precipitation, we

assume that the thermodynamic quantities S0 and Hw

are constant and focus instead on two ways in which U

and N 0 influence (37).

First, U and N 0 together determine the vertical

wavelength lz, which is inversely proportional to Ĥw in

the denominator of (37). An increase inU, or a decrease

in N 0, will cause Ĥw to decrease, thereby enhancing

precipitation. Physically, this change in Pest results from

an increase in the depth of windward ascent, which in the

absence of a tropopause is proportional to lz.

Second, in addition to influencing the depth of ascent

via lz, U also controls the magnitude of ascent via the

lower boundary condition in (5), as indicated in the

numerator of (37). In a one-layer atmosphere, these two

effects reinforce each other: an increase in U enhances

the magnitude as well as the depth of windward ascent,

while a decrease in U does the opposite. On the other

hand, a change inN 0 only alters the depth of ascent, and

will therefore have a smaller impact on Pest than a

change in U of the same magnitude.

Returning to the more general expression for pre-

cipitation in (36), we find that, like low-level windward

ascent, Pest is diminished by wave reflection at the tro-

popause when n, 2Ĥ, n1 (1/2) and is enhanced when

n2 (1/2), 2Ĥ,n. Furthermore, because Ĥ depends

onU andN 0, the actual relationship betweenU,N 0, and
Pest may be quite different than expected from the one-

layer approximation in (37). The influence of these

factors is illustrated in Fig. 2, where each curve plots Pest

as a function of Ĥ, but with different variables (H,N 0, or
U) serving as the independent variable in (36). To fa-

cilitate comparison, each curve has been normalized to

one at Ĥ5 1. In dimensional terms, it may be helpful to

think of Ĥ5 1 as representingH5 12 km,U5 15m s21,

and N 0 5 0.008 s21. The black lines show the de-

pendence of Pest onH assuming fixedU andN 0. SinceH
is proportional to Ĥ, the x axis spans values ofH ranging

FIG. 2. The quantity Pest as a function of Ĥ, but with three dif-

ferent variables (H, N0, or U) acting as the independent variable in

(36). To facilitate comparison, each curve has been normalized to

1 at Ĥ 5 1. Black curves: variable H, fixed U and N0. Red curves:

variableN0, fixedU andH. Blue curves: variableU, fixedN0 andH.

Solid lines represent a two-layer atmosphere with � 5 0.5, while

dashed lines represent the limit � / 1 [see (37)]. All curves use

Ĥw5 1 for the nondimensional moisture-scale height.

3When Ĥw � 1, Pest depends little on the vertical structure of

the mountain waves, since moisture is confined near the surface

where w is fixed by the lower boundary condition (5). As Ĥw in-

creases, however, mountain waves become more important as

higher altitudes contribute a larger fraction of total condensation,

incorporating more of the wave structure into the solution.
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from 6km at Ĥ5 1/2 to 18 km at Ĥ5 3/2. For the red lines,

U and H are fixed while N 0 ranges from 0.004 to

0.012 s21. For the blue lines, N 0 andH are fixed while U

ranges from 30m s21 at Ĥ5 1/2 to 10m s21 at Ĥ5 3/2,

reflecting the inverse relationship between U and Ĥ.

Dashed lines represent the one-layer solution [see (37)]

and serve both to highlight the effect of the tropopause

and to illustrate the general slope of each curve.

When H is the independent variable (black curve),

Pest is periodic with zero overall slope, indicating that

changes in the height of the tropopause only affect the

phase of the reflected mountain waves, not their vertical

wavelength. In contrast, when N 0 is the independent

variable (red curve),Pest exhibits a negative slope on top

of periodic fluctuations asN 0 increases from left to right.

This behavior is due to the fact that N 0 influences both
the wavelength and the phase of the reflected waves.

The negative slope is even greater in the case where U

is the independent variable (blue curve), as a result of

weaker ascent at the lower boundary as U decreases

from left to right. Yet even with the blue curve, the

general tendency for Pest to vary inversely with Ĥ is

sometimes overcome as the effects of wave reflection at

the tropopause generate local regions with positive slope.

Such instances of positive slope suggest that decreases in

U (blue curve) or increases in N 0 (red curve) can some-

times increase orographic precipitation. This surprising

result will be explored further in the next section.

The direct impact of the tropopause on orographic

precipitation is evident in the difference between the

dashed and solid lines in Fig. 2. Over the range of typical

atmospheric conditions the one- and two-layer approx-

imations can differ by more than a factor of 2, suggesting

that wave reflection by the tropopause should be con-

sidered among the most important factors controlling

orographic precipitation. Still, it is important to keep the

preceding analysis in perspective. Though concise, (36)

is without question a very crude approximation of oro-

graphic precipitation in nature. In addition to linear

dynamics, (36) is based on extremely simple thermody-

namics [see (33)] and ignores cloud microphysics alto-

gether. To better estimate the impact of the tropopause

on orographic precipitation, we must resort to more

sophisticated numerical simulations.

3. Numerical simulations

In this section, we take a step closer to reality, em-

ploying a nonlinear, nonhydrostatic mesoscale model to

examine the influence of the tropopause on orographic

precipitation in a series of idealized two- and three-

dimensional simulations. The model is an updated ver-

sion of that fully described in Durran and Klemp (1983).

The model uses terrain-following coordinates and

a two-time-step partially split approximation to the full

compressible equations, updated to use third-order

Runge–Kutta time differencing for the large-time-step

integrations (Wicker and Skamarock 2002). The subgrid-

scale turbulence formulation is based on Lilly (1962), and

warm-rain microphysics are included through a Kessler

(1969) parameterization. Ice microphysics are neglected

for simplicity.

All simulations were performed with a resolution of

Dx5Dy5 1 km in the horizontal and Dz5 200m in the

vertical. For the 2D simulations we used 800 3 75 x–z

grid points, while the grid for the 3D simulations con-

tains 600 3 600 3 75 grid points. Simulations were

initialized from a state of rest and integrated forward

with a large time step of 10 s until an approximate

steady state was reached (15 h). To minimize the spu-

rious artifacts associated with a cold start, the upstream

wind speed was gradually increased from zero to its

steady-state value over the first 2 h of each simulation.

Open (radiation) boundary conditions were approxi-

mated at the lateral boundaries by propagating per-

turbations in the velocity component normal to the

boundary outward at a phase speed of 25m s21. An

open boundary condition was approximated at the

top of the domain using a nonperiodic formulation of

the Klemp–Durran–Bougeault hydrostatic gravity

wave radiation condition that perfectly transmits

wavelengths of 15, 60, and 120 km (Durran 2010, p. 484;

Bougeault 1983; Klemp and Durran 1983).

We present three sets of experiments designed to test

different aspects of the linear theory presented above. In

the first set of experiments, we simulate dry flow over

a low ridge to demonstrate the ability of the numerical

model to reproduce the analytic flow-field solution un-

der approximately linear conditions. In the second set of

simulations, we raise the height of the ridge and evaluate

the sensitivity of precipitation to variations inH, U, and

N under saturated conditions, comparing the results

with (36). Finally, we present results of more realistic

three-dimensional simulations involving a ridge of finite

length and linear wind shear.

a. 100-m ridge, dry troposphere

We begin with simulations of dry flow over a low two-

dimensional witch-of-Agnesi ridge with dimensions h0 5
100m and a 5 25km. To isolate the impact of wave re-

flection at the tropopause, we hold N and U constant

while varyingH. For the upstream sounding, we set N5
0.01 s21, Ns 5 0.02 s21, and U 5 15.92m s21, which im-

plies a hydrostatic vertical wavelength in the troposphere

of lz 5 10km. Simulations are performed with tropo-

pause heights of 8.5, 9.5, 10.5, and 11.5km, corresponding
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to nondimensional tropopause heights of Ĥ5 0.85, 0.95,

1.05, and 1.15.

Figure 3 shows the vertical velocity fields for each sim-

ulation (right column), along with equivalent fields pre-

dicted by linear theory [see (28)] (left column). To compare

the linear and numerical solutions directly, it is necessary to

account for our use of the Boussinesq approximation in

deriving the linear solution. To do so, we have scaled the

fields from the numerical model by a factor of (r/r0)
1/2,

where r0 is the air density at the surface and r(z) is the

FIG. 3. Vertical velocities (m s21) over a 100-m-high witch-of-Agnesi ridge in a two-layer atmosphere, (left) derived from linear theory

[see (28)] and (right) a numericalmodel. Red (blue) colors indicate regions of ascent (descent), with thick black lines representing the zero

contour. Green lines represent the tropopause. Solutions are shown for tropopause heights: (top to bottom)H5 8.5, 9.5, 10.5, and 11.5 km

and Ĥ 5 0.85, 0.95, 1.05, and 1.15.
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density of the background flow as a function of height.

Although this scaling is only exact as a transformation

between Boussinesq and isothermal atmospheres, it is

sufficiently accurate for our purposes, as demonstrated

by the similarity in the magnitude of vertical velocities

within the linear and numerical solutions in Fig. 3.

Significant changes to the flow field occur as Ĥ varies

between 0.85 and 1.15. Upstream of the ridge crest (i.e.,

x , 0), low-level ascent is deeper and more vigorous

when Ĥ, 1 (i.e., when H 5 8.5 and 9.5 km) than when

Ĥ. 1 (i.e., H 5 10.5 and 11.5 km), which is consistent

with our analysis of windward ascent discussed in the

previous section (Fig. 1). Other differences are also

apparent, most notably in the magnitude and location of

maximum leeside descent. Such differences will turn out

to be important in later simulations, when we compare

the distributions of precipitation across the ridge.

Overall, the numerical model does a good job of

capturing variability in ascent associated with changes in

tropopause height. The strong agreement between the

linear and numerical fields in Fig. 3 demonstrates both

the ability of themodel to simulate wave reflection at the

tropopause and the diversity of flow-field patterns that

can result from it.

b. 1-km ridge, saturated troposphere

Our next series of simulations involves a two-

dimensional ridge of the same 25-km half-width as be-

fore, but with a height of 1 km capable of generating

significant precipitation. We consider separately three

scenarios, in which one of the variables H, N, or U is

varied while the other two variables are held fixed. All

simulations were performed using a surface temperature

of 58Cand relative humidities of 100% in the troposphere

and 20% in the stratosphere.

1) THE RESPONSE OF PRECIPITATION TO

CHANGING TROPOPAUSE HEIGHT

Let us first consider how changes in H affect pre-

cipitation while U and N are held constant. Thirteen

simulations were performed with tropopause heights

between 7.5 and 13.5 km, each with upstream soundings

of U5 15m s21, N5 0.012 s21, and Ns 5 0.02 s21. From

(24), we find that these conditions imply a moist stabil-

ity, Nm, ranging from about 0.005 s21 at the surface to

0.012 s21 above 10 km.

The blue dots in Fig. 4 show the cross-mountain-

integrated precipitation rate for each simulation. The

shape of the dots is approximately periodic, as predicted

by linear theory [see (36)]. The effective stability, N 0,
can be estimated from the phase of the dots, which

suggests that Ĥ5 1 near H 5 10.5 km, with more (less)

precipitation for tropopause heights below (above) that

level. Since U5 15m s21, this implies an effective static

stability of N 0 ’ 0.009 s21, which is very close to the

average of Nm across all simulations (0.0091 s21). Sig-

nificantly, this result appears to validate our earlier

prediction—based on Jiang (2003)—thatN0 ’Nm when

there are widespread regions of saturation and Nm is

significantly greater than zero.Overall, precipitation varies

by more than a factor of two across the simulations (53–

110m2h21), with the greatest precipitation occurring

when H 5 9.5 km and the least when H 5 11.5 km.

How do these results compare to the linear approxi-

mation [see (36)] derived in the previous section? Given

S0 5 1.9 3 1023 gm24 (see appendix), an effective sta-

bility of N 0 5 0.009 s21, and a moisture-scale height of

Hw 5 1.5 km, the linear approximation agrees well with

the numerical simulations (red line). However, for the

conditions simulated (Ts 5 58C, N 5 0.012 s21), the ac-

tual e-folding height of water vapor is around 2.5 km (see

appendix). Using this more realistic value for Hw, (36)

significantly overpredicts the sensitivity of precipitation

to changes in tropopause height (green line).

There are at least two possible reasons why using

a lower value of Hw in (36) produces better agreement

with the numerical simulations, both of which are evi-

dent in Fig. 5, which shows the linear and numerical

vertical velocity fields for the cases of maximum and

minimum precipitation (H 5 9.5 and 11.5 km). First,

(36) is based on the assumption that precipitation is

equal to upstream condensation, which neglects the

microphysical processes and time scales involved in

converting condensation into precipitation. In reality,

FIG. 4. Cross-ridge-integrated precipitation rates produced by

two-dimensional saturated flow over a 1-km-high ridge as a func-

tion of tropopause height H when � 5 0.6. Results are from non-

linear numerical simulations (blue dots) and the linear estimate

[see (36)] with Hw 5 1.5 (red line) or 2.5 km (green line). For ref-

erence, the precipitation in the one-layer limit, � 5 1, (37) is also

shown (dotted black line).
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some of the condensation that forms aloft evaporates in

the lee before reaching the surface, especially when

windward ascent is deepest (e.g., whenH5 9.5 km; top-

left panel). Second, (33) [from which (36) is derived] is

indifferent to the sign ofw, treating regions of descent as

negative sources of condensation (i.e., evaporation).

Therefore, when windward ascent is shallow and topped

by a layer of vigorous descent (as in the 11.5-km case;

bottom-left panel), the linear column-integrated con-

densation is negative over portions of the windward

slope near the crest. In such cases, (36) gives too much

weight to evaporation aloft at the expense of conden-

sation near the surface. Both of these problems are

mitigated by using a lower moisture-scale height, likely

explaining the improved agreement between the linear

and numerical results.

To better understand the connection between vertical

velocity and precipitation within the numerical simula-

tions, it is useful to compare the H 5 9.5- and 11.5-km

cases in greater detail. Figures 6a and 6b show the con-

centration of cloud water (blue lines) and rainwater

(shading), in addition to streamlines of parcels origi-

nating 100 km upstream of the ridge crest (red lines).

Focusing first on the streamlines, we find that for a par-

cel that begins at 1 km altitude, the differences between

the two cases are modest, with only about 150m more

ascent in the 9.5-km case. However, for a parcel origi-

nating at 3 or 4 km, where the flow is less influenced by

the free-slip lower boundary condition, the difference in

maximum ascent between the two cases is much larger

(;400m). In the 11.5-km case, in fact, the 4-km

streamline actually descends over the windward slope,

falling more than 150m by the time it crosses the ridge

crest. This explains why the cloud layer is both deeper

and thicker in the 9.5-km case, resulting in more than

twice as much precipitation.

A further contrast between the two cases is evident

downwind of the crest, where each streamline in the

9.5-km case descends lower than its counterpart in the

11.5-km case. This behavior is caused by much stronger

leeside descent in the 9.5-km case (Fig. 5), and it has

important consequences for leeside evaporation: in the

9.5-km case, no cloud water is present beyond 15 km

downwind of the crest, while in the 11.5-km case, cloud

water persists more than 30 km downwind of the crest

owing to weaker descent and lower evaporation rates.

These differences in leeside descent–evaporation also

affect precipitation, as shown in Fig. 6c. While the

9.5-km case exhibits greater precipitation overall, the

ratio of leeward-to-windward precipitation is signifi-

cantly lower in the 9.5-km case than in the 11.5-km case

(0.35 versus 0.51), indicative of a stronger orographic

FIG. 5. As in Fig. 3, except for a 1-km-high ridge; and solutions are shown for the two numerical cases: (top)H5 9.5 and (bottom) 11.5 km,

exhibiting the most and least precipitation, respectively. Units are m s21.
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rain shadow. In section 4, we discuss the possible im-

plications of this result for rain-shadow variability in

realistic terrain.

2) THE RESPONSE OF PRECIPITATION TO

CHANGING WIND SPEED AND STATIC STABILITY

In addition to varying H, further simulations were

performed varying U (from 10 to 20m s21, with N 5
0.012 s21) and N (from 0.009 to 0.015 s21, with U 5
15m s21). All other parameters where held constant,

including Ns 5 0.02 s21, H 5 10.5 km, and the surface

temperature at 58C.

Figure 7a shows the cross-mountain-integrated pre-

cipitation rate from the variable-U simulations (blue

dots), alongside the linear approximation [see (36)] (red

line), calculated using S0 5 1.9 3 1023 gm24, Hw 5
1.5 km, and N0 5 Nm 5 0:009 s21. Overall, the linear ap-

proximation does a good job of capturing both the am-

plitude and phase of precipitation variability—further

evidence that N0 ’Nm is accurate under these condi-

tions.While faster wind speeds generally result in greater

precipitation, this tendency is reversed over certain in-

tervals ofU (between 11 and 13 and 18 and 20m s21), just

as predicted in the linear approximation. That such be-

havior would be impossible in a one-layer atmosphere

(dotted line) demonstrates the significant impact the

tropopause can have on orographic precipitation.

Calculating Pest is trickier when N is the independent

variable (Fig. 7b), becauseN 0 can no longer be identified
from the phase of the numerical results (blue dots). If

we assume, based on previous results, that N0 5Nm, the

FIG. 6. Cloud water mixing ratio (blue contours, intervals of

0.2 g kg21), rainwater mixing ratio (blue shading, g kg21), and

parcel streamlines (red lines) from numerical simulations in which

H is (a) 9.5 and (b) 11.5 km. Dashed red lines show the streamlines

from the other simulation. (c) Precipitation rates as a function of

the cross-ridge coordinate for both cases (mmh21).

FIG. 7. Cross-ridge-integrated precipitation rates produced by

saturated flow over a 1-km-high ridge as a function of (a) wind

speed and (b) static stability, from numerical simulations (blue

dots) and (36) (red lines), calculated assuming N0 5Nm.
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linear approximation (red line) performs reasonably

well when N $ 0.012 s21 but rather poorly when N ,
0.012 s21, suggesting that linear theory breaks down as

N decreases and the lower troposphere approaches

convective instability. Overall, the influence of the tro-

popause is clear in both the linear and numerical results,

which show precipitation increasing as N is raised from

0.013 and 0.015 s21—a result that would not be expected

in the absence of a tropopause (dotted line).

Together, Figs. 4 and 7 demonstrate two things. First,

despite its simplicity, (36) is nevertheless a useful tool

for understanding the connection between windward

ascent and orographic precipitation. Second, within a

nonlinear, nonhydrostatic numerical model, the amount

and distribution of orographic precipitation is signifi-

cantly affected by wave reflection at the tropopause, just

as one would expect based on linear theory.

c. 3D ridge, linear shear

Our third set of simulations incorporates two changes

intended to better approximate nature: three-dimensional

terrain and linear wind shear. We focus on a simple

forward-shear scenario, inwhichU increases linearlywith

height in the troposphere and is constant in the strato-

sphere. The linear flow field under these conditions has

been discussed elsewhere (e.g., Klemp and Lilly 1975)

and will not be repeated here. For our purposes, it is

sufficient to note that the presence of wind shear does not

change the essential result from section 2—that low-level

windward ascent will either be enhanced or diminished

depending on the phase of the mountain waves reflected

by the tropopause. Using the same notation as before,

and following the same procedure described by Klemp

and Lilly (1975), it can be shown that for a tropospheric

wind profile given by

U(z)5U0(11az) , (38)

the hydrostatic nondimensional tropopause height takes

the form

Ĥ5
1

2pa

�
N02

U2
2

a2

4

�1/2

ln(11aH) . (39)

While this equation is considerably more complicated

than its no-shear equivalent [see (30)], Ĥ plays essentially

the same role in both cases, indicating diminished low-

level windward ascent when n, 2Ĥ, n1 (1/2) and en-

hanced ascent when n2 (1/2), 2Ĥ, n. Therefore,

whetherU is constant or sheared, we expect precipitation

to be similarly sensitive to variations in tropopause height.

To test this hypothesis, we have performed a series

of 3D numerical simulations with tropopause heights

between 7.5 and 13.5 km, but with constant upstream

soundings of U0 5 15m s21, a 5 1.67 3 1024m21, N 5
0.012 s21, 100% tropospheric relative humidity, and a

surface temperature of 58C. From (38), these parameters

imply thatU increases 2.5m s21 per kilometer of altitude

within the troposphere. In the stratosphere, Ns 5
0.02 s21 and U 5 U0(1 1 aH). The terrain consists of

a finite ridge given by

h(x, y)5

8>>>><
>>>>:

h0a
2

a21 x2
, if jyj# l

h0a
2

a21 x21 (jyj2 l)2
, if jyj. l

, (40)

where h0 5 1 km and a5 25 km are the height and half-

width of the ridge as before, while 2l 5 300 km is the

length of the ridge in the y dimension. At the upstream

boundary, the direction of the background flow is as-

sumed to be perpendicular to the ridge axis at all levels.

Simulations were performed on the f plane using Cori-

olis parameters of 0 and 1024 s21. Since theCoriolis term

did not change the results substantially, here we discuss

only the f 5 0 case.

As expected, precipitation within these simulations is

found to vary significantlywithH, just as it did in previous

2D simulations with constant U. Overall, the greatest

precipitation occurs whenH5 8.5 km and the least when

H5 13 km. Figure 8 shows the precipitation rate in each

of these simulations on top of topographic contours

(black lines). Along the bisect shown in green, the in-

tegrated cross-ridge precipitation rate differs by a factor

of 1.75 between the two simulations (80.2 vs 45.9m2h21).

The reason for this difference in precipitation is evi-

dent in Figs. 9a,b, which show the concentrations of

cloud water (blue lines), rainwater (blue shading), and

parcel streamlines (red lines) in the vertical plane in-

tersecting the green line in Fig. 8. When H 5 8.5 km,

parcels ascend higher over the windward slope (red

lines), leading to greater concentrations of liquid water

and ultimately precipitation (Fig. 9c), just as we saw in

the 2D simulations (Fig. 6). Leeside descent also differs

between the two simulations, though rain-shadow

strength is less affected because the contrast in descent

is greatest beyond 25 km downwind of the crest, where

there is little liquid water to evaporate.

In summary, whether in two or three dimensions,

uniform or sheared flow, the simulations presented in

this section have demonstrated that the tropopause has

a first-order impact on the amount and distribution of

orographic precipitation. In the next section, we con-

sider the possible implications of this result for pre-

cipitation variability in realistic terrain.
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4. Application to realistic terrain using a modified
version of the Smith–Barstad model

In the previous section, we used a nonlinear nu-

merical model to show that orographic precipitation is

significantly influenced by the reflection of mountain

waves at the tropopause, confirming our prediction

based on linear theory. We also found that while the

amount of precipitation seems to dependmostly on the

depth and magnitude of windward ascent, the distri-

bution of precipitation is also influenced by the mag-

nitude of descent in the lee. In cases where windward

ascent was most enhanced by the tropopause, leeside

descent was also quite vigorous, resulting in a strong

rain shadow. On the other hand, cases with the

weakest windward ascent also exhibited weak leeside

descent, resulting in less evaporation and a weaker

rain shadow.

In light of these results, it is reasonable to ask what

role the tropopausemight play in controlling the amount

and distribution of orographic precipitation in the real

world. Here we attempt to shed some light on this

question by using a modified version of the linear model

of orographic precipitation of SB04 to compare rainfall

patterns in theWashington Cascades given two different

tropopause heights.

a. Linear model description

The SB04 model utilizes the same approximation for

column-integrated condensation [see (33)] that we used

to approximate precipitation over a 2D ridge [see (36)].

However, rather than integrating in space to calculate

the total precipitation [see (34)], the SB04 model esti-

mates the spatial distribution of precipitation using the

following differential equations governing the column-

integrated densities of cloud water qc and rainwater qr:

U � $qc 5 S(x, y)2 qc/tc and (41)

U � $qr 5qc/tc 2 qr/tf . (42)

Here, U is the two-dimensional wind vector and S(x, y)

is the two-dimensional, column-integrated form of the

condensation rate defined in (33). The constants tc and

tf represent characteristic time scales for cloud water

conversion and rainwater fallout and are, therefore,

a simple way to incorporate cloud microphysics within

FIG. 8. Precipitation rate (shaded contours, mmh21) and terrain height (black contours,

200-m intervals) for the 3D simulations with (a) H = 8.5 and (b) H = 13 km. The flow is across

the ridge from left to right. Along the green line bisecting the ridge, the cross-ridge-integrated

precipitation rate is (a) 80.2 and (b) 45.9m2 h21.
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a linear framework. In the second equation, the sink

term qr/tf is equivalent to the precipitation rate at the

surface. By Fourier transforming these equations in the

horizontal and rearranging the terms, the precipitation

rate is found to be

P̂(k, l)5
Ŝ(k, l)

(11 istc)(11 istf )
, (43)

where Ŝ(k, l) represents the two-dimensional Fourier

transform of the column-integrated condensation,

Ŝ(k, l)5 S0

ð‘
0
e2z/H

wŵ(k, l, z) dz, (44)

with S0 and Hw defined in (33).4

In the original SB04 model, ŵ in (44) is calculated

assuming a one-layer atmosphere with constant N 0 and
U. An extension of the model, introduced by Barstad

and Schüller (2011), accommodates multiple layers with

different N 0 and U and has been used to demonstrate

how changes in wind speed and microphysical time

scales affect precipitation. However, if we assume that

(35) holds, and thatU, tc, and tf are constant everywhere,

it is sufficient for our purposes to use the original model,

but with ŵ in (44) replaced by its two-layer analog within

the troposphere. With this single modification, our model

retains the simplicity of the original model, while still

incorporating the effects of a tropopause.

Following the same procedure described in section 2

for a single Fourier component, the three-dimensional

transformed tropospheric vertical velocity is found to be

ŵ(k, l, z)5 isĥ(k, l)(C1eimz1C2e2imz) , (45)

where the constants C6 are defined in (8), ĥ is the

transformed height of the terrain, and s5Uk1Vl, with

V and l representing the wind speed and wavenumber in

the y dimension, analogous to U and k in the x di-

mension. Given constantN 0 andU, the (nonhydrostatic)

2D vertical wavenumber is given by

m2 5
N022s2

s2
(k21 l2) . (46)

Combining (43)–(45), we arrive at the full expression

for the Fourier transformed precipitation rate,

P̂(k, l)5
S0Hwisĥ(k, l)

(11 istc)(11 istf )

�
C1

12 imHw

1
C2

11 imHw

�
,

(47)

which is equivalent to (49) from SB04, but with the ef-

fects of a tropopause included. As in the original model,

if we allow for a background precipitation rate, P‘, and

exclude the possibility of negative precipitation, the

precipitation rate in real space becomes

FIG. 9. Cloud water mixing ratio (blue contours, intervals of

0.2 g kg21), rainwater mixing ratio (blue shading, g kg21), and

parcel streamlines (red lines) along the bisecting plane of the ridge

(green line, Fig. 8) in the 3D numerical simulations exhibiting the

least andmost precipitation: (a)H5 8.5 and (b) 13 km.Dashed red

lines indicate streamlines from the other simulation. (c) Pre-

cipitation rates for the two cases (mmh21).

4 Note that in the original version of the model, S0 is replaced by

Cw/Hw, and formulas are given for estimating bothCw andHw from

the surface temperature and lapse rate. However, it is our opinion

that S0 is more physically intuitive than Cw, since it represents the

condensation per unit vertical displacement at the surface. An

exact expression for S0 was derived by Siler and Roe (2014) and is

discussed in the appendix.
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P(x, y)5max(P*, 0), (48)

where

P*(x, y)5

ð‘
2‘

ð‘
2‘

P̂(k, l)eikxeily dk dl1P‘. (49)

b. Application of the linear model to the Washington
Cascades

To illustrate the potential for tropopause height to

influence precipitation patterns in realistic terrain, here

we apply the modified linear model to the Cascades of

Washington State, where significant variability in rain-

shadow strength has been observed (Siler et al. 2013).

We present results for two different tropopause heights,

with tc 5 tf 5 1000 s, and with other parameters un-

changed from the 2D simulations presented in section 3

(S051.93 1023 gm24,N 05 0.009 s21). With microphysics

now implicitly accounted for, the factors that necessi-

tated a reduction in Hw in section 3 no longer apply,

and we therefore use the empirically derived value of

Hw 5 2.5 km. Based on an analysis of Cascade storms

by Siler et al. (2013), we set P‘ 5 1mmh21 and assume

a wind speed of 15m s21 with a west-southwesterly

orientation of 2508. Calculations were made using a

1024 3 1024 grid with 1-km resolution centered on the

Washington Cascades (not shown).

Figure 10 shows the precipitation patterns in the

Washington Cascades predicted by the linear model for

tropopause heights of 9.5 and 11.5km. These patterns

exhibit similar differences as the 2D numerical simula-

tions (Fig. 6c). First, precipitation is significantly greater in

the 9.5-km case as a result of enhanced ascent over the

windward slope. Second, the distribution of precipitation

is more evenly distributed between eastern and western

slopes in the 11.5-km case than in the 9.5-km case, with

ratios of eastern-to-western precipitation equal to 0.42

and 0.30, respectively. As in the 2D simulations, the

contrast in precipitation patterns is a result of bothweaker

windward ascent and weaker leeside descent in the

11.5-km case, which allows cloudwater to penetrate further

downstream. These results suggest that wave reflection by

the tropopause may account for some of the variability in

rain-shadow strength observed among storms in the Cas-

cades (Siler et al. 2013), though more observations are

needed to evaluate this theory with any confidence.

5. Summary and discussion

In this paper, we have used a combination of linear

theory and numerical simulations to investigate the

FIG. 10. The precipitation rate (mmh21) in the Washington Cascades given tropopause heights of (a) 9.5 and

(b) 11.5 km, calculated using a modified version of the linear model of SB04. Input parameters are N0 5 0.009 s21,

S05 1.93 1023 gm24,Hw5 2.5 km, jUj5 15m s21 (from 2508/west-southwest), tc5 tf5 1000 s, andP‘ 5 1mmh21.

The black line represents the crest of the range.

FEBRUARY 2015 S I L ER AND DURRAN 817



impact of the tropopause on orographic precipitation.

Our main results are summarized below.

(i) According to linear theory, wave reflection at the

tropopause can either enhance or diminish low-

level windward ascent, depending on the value of

a nondimensional number Ĥ, which represents the

ratio of the tropopause height to the vertical wave-

length of themountain waves.When the tropopause

lies a bit below an integer multiple of a half vertical

wavelength (i.e., when n2 (1/2), 2Ĥ, n) low-level

windward ascent is enhanced. Conversely, ascent is

diminished when the tropopause lies a bit above an

integer multiple of a half vertical wavelength [i.e.,

when n, 2Ĥ, n1 (1/2)].

(ii) Combining linear dynamics with crude assump-

tions about condensation and hydrometeor fallout,

we derived an approximation for precipitation

over a 2D ridge [Pest; see (36)], which exhibits the

same sensitivity to Ĥ as windward ascent. This

equation implies that the tropopause can exert just

as much influence on orographic precipitation as

wind speed and static stability, whose influence on

precipitation is well documented.

(iii) Numerical simulations of saturated flow over a 2D

ridge were performed with a range of wind speeds,

static stabilities, and tropopause heights. In general,

total precipitation within the simulations was found

to agree well with the linear approximation when

the effective static stability, N 0, was assumed to be

equal to the troposphere-mean moist static stability,

Nm. The simulations also confirm one of the more

surprising predictions of the linear approximation—

that an increase inU or a decrease inN can in some

cases result in less orographic precipitation.

(iv) Further simulations were performed with the same

range of tropopause heights as before, but on a 3D

grid with linear wind shear. These changes did not

dramatically affect the sensitivity of precipitation

to tropopause height, as precipitation varied by

a factor of 2.06 in the 2D simulations and 1.75 in the

3D simulations.

(v) The idealized simulations showed significant dif-

ferences not only in the amount of precipitation,

but also in the strength of the orographic rain

shadow. The contrast in rain-shadow strength is

due to differences in the magnitude of leeside

descent and, thus, evaporation. To test the possible

implications of this result in realistic terrain, we

introduced a version of the linear orographic pre-

cipitation model of SB04, which we modified to

account for the presence of a tropopause. Using the

Washington Cascades as a case study, we showed

that modest changes in tropopause height do in fact

have a significant impact on both the amount of

precipitation and the strength of the rain shadow.

This suggests that wave reflection by the tropo-

pause could account for some of the variability in

rain-shadow strength observed among major Cas-

cade storms.

How important is the tropopause to orographic pre-

cipitation in nature? Observations and more sophisti-

cated modeling studies may eventually help answer this

question, but for now we can only speculate. Climato-

logically, we suspect that in most mountain ranges, Ĥ is

sufficiently variable that the tropopause has little impact

on mean precipitation patterns. For a given storm,

however, the influence of the tropopause likely depends

on the environmental conditions.

Two types of environments are particularly unfavor-

able to strong tropopause influence. First, when storms

exhibit a combination of strong winds and low static

stability—as might occur within an atmospheric river,

for example—the vertical wavelength can greatly ex-

ceed the tropopause height, such that Ĥ’ 0. From (36),

this implies that precipitation should scale linearly

with wind speed, consistent with the high correlation

between wind speed and precipitation observed during

high-wind, low-stability storms in California’s coastal

mountains (Neiman et al. 2002). On the opposite end of

the spectrum, when storms with weak winds and high

stability encounter a tall mountain range, the low-level

flow upstream of the ridge can become blocked, result-

ing in weak mountain waves and correspondingly min-

imal tropopause influence (Smith et al. 2002).

Under typical conditions in many mountain ranges,

however, Ĥ is greater than zero and mountain waves

strongly modulate the flow field. In this scenario,

our results suggest that tropopause height is likely to

be just as important as static stability and wind speed

in determining the structure of the flow field and,

thus, the amount and distribution of orographic

precipitation.

While this may be the first paper to assess the in-

fluence of the tropopause on orographic precipitation,

the ideas presented here owe much to Klemp and Lilly

(1975), whose linear explanation for downslope wind

storms was based on similar ideas about wave reflection.

Their theory has since fallen out of favor, as the essential

role of nonlinear dynamics in downslope wind storms

has become clearer (Smith 1985; Durran 1986). How-

ever, mountain-wave-induced perturbations over the

windward slope during precipitation events are much

weaker than those in the lee during downslope wind

storms, and our results suggest that linear theory can
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provide a very useful framework for understanding the

dynamical controls on orographic precipitation.
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APPENDIX

Determination of Thermodynamic Quantities
S0 and Hw

In (33), S0 represents the condensation per unit ver-

tical displacement at the surface, while Hw represents

the scale height of moisture. For a saturated air parcel,

Siler and Roe (2014) give

S05
es

R2
yT

2
s

�
LyGm

Ts

�
p

p2 (12 �)es

�
2
g

�

�
, (A1)

where es is the saturation vapor pressure,Ry is the specific

gas constant of water vapor,Ts is surface temperature,Ly

is the latent heat of vaporization,Gm is themoist adiabatic

lapse rate, p is pressure, g is the acceleration due to

gravity, and � is the ratio of the gas constants of dry air and

water vapor. The linear calculations in sections 3 and 4

were made using S0 5 1.93 1023 gm24, which is derived

from p 5 105 Pa, Ts 5 58C, Ry 5 461 J kg21K21, Ly 5
2.53 106 J kg21, �5 0.622, and Gm5 5.8Kkm21 [Durran

and Klemp 1982, their (19)].

Calculation of Hw is less straightforward, since the

vertical distribution of moisture is not quite exponential.

However, if Hw is defined as the e-folding height (i.e.,

the height at which the density of water vapor drops to

1/e times its surface value), then for a saturated atmo-

sphere with N 5 0.012 s21 and a surface temperature of

58C, Hw is close to 2.5 km.

SB04’s treatment of thermodynamics is essentially

the same as ours, but they use different methods to

calculate the constants. First, they define the moisture-

scale height as

Hw 5
RyT

2
s

Lyg
, (A2)

where g is the environmental lapse rate. For the condi-

tions described above, g ’ 6Kkm21, and (A2) yields

Hw ’ 2.4 km, which is not substantially different from

the actual e-folding value of 2.5 km.

Second, SB04 approximate S0 as

S0’
Cw

Hw

, (A3)

where Hw is the moisture-scale height, and

Cw5
esGm

RyTsg
. (A4)

Together, (A2)–(A4) give

S0’
esLyGm

R2
yT

2
s

, (A5)

which in our case overestimates S0 by nearly 50%.

This suggests that while (A2) is quite reasonable, the

treatment of thermodynamics within the linear model is

significantly improved by replacing (A5) with the exact

expression for S0 given by (A1).
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