
Simulated squall lines developing in horizontally homogeneous environments are more sensitive 
to small initial perturbations on scales of 100 km than to larger perturbations on smaller scales.
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T he weather will evolve differently from that 
 predicted by a perfect forecast model if the 
 initial state provided to the model differs even 

slightly from that for the atmosphere. Progressive 
increases in computing power have made it possible 
for forecast models to capture atmospheric motions 
on ever smaller scales, yet such improvements will 
not necessarily lead to significantly better forecasts. 
Lorenz (1969) showed that confining errors in the ini-
tial state to ever smaller scales, possibly even down to 
the size of a butterfly, did not significantly extend the 
time over which his highly idealized model exhibited 
predictive skill. Nevertheless, as noted by Durran 
and Gingrich (2014), Lorenz’s work also implies that 

initial errors at extremely small scales are not likely to 
impose a practical limit on forecast accuracy, because 
they would be swamped by minor relative errors in 
the initial conditions at much larger scales. Here we 
show that similar conclusions about the importance 
of larger scales apply to the propagation of initial-
condition errors in simulations of thunderstorms 
and squall lines using a numerical cloud model that 
provides a far more complete representation of atmo-
spheric motions than that used by Lorenz.

THE LORENZ MODEL. Surprisingly, the practi-
cal irrelevance of butterflies and other very small-
scale initial errors can be deduced from the original 
work of Lorenz (1969), who compared the impact on 
predictability of perturbations introduced at both the 
smallest and largest scales in an idealized turbulence 
model. Lorenz found that the impact of errors with 
equal absolute magnitude was similar whether the 
errors initially appeared at the smallest scale (his 
experiment A) or the largest scale (his experiment B). 
Lorenz devoted only one paragraph to the large-scale 
case and focused instead on the growth of small-scale 
errors, including the possible impact of seagull wings.

Lorenz modeled the behavior of ensembles, or 
families, of turbulent f lows in which each family 
member freely evolves from slightly different initial 
conditions relative to the ensemble-mean state. Using 
a slightly updated version of Lorenz’s model (Durran 
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and Gingrich 2014), the loss of predictability in his 
experiments A and B is shown in Fig. 1 by plots of 
the error amplitude (measured by its kinetic energy 
KE′) as a function of horizontal scale at times ranging 
from 20 min to 3 days. Also plotted as a thick gray 
line is the background ensemble-mean atmospheric 
kinetic energy (KE) spectrum assumed by Lorenz, 
which increases in proportion to the wavelength λ 
to the 5/3 power. When KE′ at a given wavelength 
increases to match KE, the error is saturated and all 
predictability at that wavelength is lost.

If, as shown in Fig. 1a, the initial error is only at the 
smallest scale (38 m) and is saturated, then that error 
modifies somewhat larger scales of motion, which 
in turn modify even larger scales. After 20 min (red 
dashed line), the errors have propagated upscale and 
are saturated between wavelengths of 38 m and 1 km; 
the errors fall off rapidly at wavelengths longer than 
1 km and are too small to plot at wavelengths greater 
than 11 km. At subsequent times, the error continues 
to cascade upscale, saturating, for example, at wave-
lengths up through 100 km in about 9 h.

Initial errors having the same absolute magnitude 
are imposed at the longest wavelength (28,300 km) in 
experiment B. As shown in Fig. 1b, the large-scale error 
propagates very rapidly downscale, becoming apparent 
at the shortest wavelengths within 20 min. These newly 
generated small-scale errors then start cascading back 
upscale in a manner similar to that in experiment A. 
By 3 h into the forecast (dashed purple lines), the spec-
tral distribution of the errors in both experiments has 
become very similar, with saturated errors at all scales 
smaller than roughly 20 km. Note that, although the 

error in experiment B actually originates in the large 
scale, it appears to originate in the small scales because 
that is where the relative error first becomes significant.

To the extent that the Lorenz model correctly de-
scribes the atmosphere, the behavior in Fig. 1a implies 
that inaccurately initialized fields at even smaller 
wavelengths, the size of butterflies, could indeed ruin a 
weather forecast. Nevertheless, comparing both panels 
of Fig. 1, it is evident that butterflies will never be of 
practical importance because trivial relative errors in 
the large scales will overwhelm 100% relative errors 
on the very small scales. The initial large-scale KE′ 
in experiment B is smaller by a factor of 10–9 than the 
background kinetic energy at the same scale, corre-
sponding to initial perturbations in the velocity field 
that are a factor of 10–9/2 smaller than the background 
velocities. Even on such large nominally well-observed 
scales, it is not likely that the atmospheric circulations 
at a given instant could be determined to within a rela-
tive error of 10–9/2 at any time in the foreseeable future. 
Within the context of experiments A and B, a complete 
failure to correctly initialize atmospheric features with 
a wavelength of 38 m would be of no practical impor-
tance unless the largest-scale winds can be initialized 
with relative errors less than 0.003%. Similarly, the 
even smaller-scale perturbations generated by butter-
flies should never have a practical impact on weather 
forecasts because the initial conditions at larger scales 
cannot be specified with sufficient accuracy.

SQUALL-LINE SENSITIVITIES. How appli-
cable is the preceding to the real atmosphere? The 
dynamics underlying Lorenz’s turbulence model are 

FIG. 1. Error amplitude (perturbation kinetic energy density) plotted as a function of horizontal wavelength 
for Lorenz’s (a) experiment A and (b) experiment B (dashed lines) at simulation times ranging from 20 min to 
3 days. The thick gray line shows the background kinetic energy of the ensemble-mean velocities.

�
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those for a highly idealized two-dimensional f low 
in which the turbulence is assumed to be spatially 
homogeneous and statistically stationary. The actual 
background atmospheric kinetic energy spectrum 
only follows the λ5/3 slope assumed by Lorenz for 
wavelengths smaller than about 400 km (Nastrom 
and Gage 1985). At scales larger than 400 km, the at-
mospheric kinetic energy spectrum transitions to a λ3 
slope, and both downscale and upscale error propaga-
tion proceed more slowly (Rotunno and Snyder 2008). 
An important real-world counterexample to the 
roughly equivalent loss of predictability produced by 
equal-amplitude large- and small-scale errors might 
be provided by thunderstorms, which are believed to 
be particularly effective at rapidly propagating small-
scale perturbations to larger scales (Zhang et al. 2006; 
Hohenegger and Schär 2007). Indeed, many case 
studies of erroneous weather forecasts have suggested 
that serious errors can be traced back to regions of 
deep moist convection (Zhang et al. 2002, 2003, 2007; 
Rodwell et al. 2013).

We therefore use a numerical cloud model (Durran 
and Klemp 1983) to generate a pair of 25-member 
ensemble simulations of collections of thunderstorms, 
known as squall lines, under atmospheric conditions 
similar to those specified in Weisman and Klemp 
(1982) and used in many classic theoretical studies of 
deep moist convection. In all ensemble members, the 
initial thunderstorms are triggered by three identical 
bubbles of warm air near the surface. Variations in 
the position and strength of the squall line among 
different members of the ensembles are produced by 
small initial “errors” in the surface temperature field 
that decay exponentially over a height of 1 km. The 
first 25-member ensemble is analogous to Lorenz’s 
experiment A in that the errors are small scale, having 
horizontal wavelengths of 8 km in both the east–west 
and north–south directions. The phase of the 8-km-
wavelength perturbation varies randomly among 
the ensemble members. The second 25-member 
ensemble, analogous to experiment B, has random-
phase initial perturbations at much longer 128-km 
wavelengths. However, unlike Lorenz’s experiments 
A and B, where the initial absolute errors had equal 
magnitudes, the amplitudes of the 128-km tempera-
ture perturbations are only one-quarter as large as 
those at 8 km.1

After 4 h of simulated time, thunderstorms are 
present in all ensemble members and are primar-
ily distributed along a roughly north–south line. 

The position of the heavy rain cells, as shown by 
synthetic radar images in Fig. 2, varies considerably 
between the different members. In members such as 
those shown in Figs. 2a and 2c, the strongest cells are 
concentrated into relatively short segments, whereas 
in other members, such as those in Figs. 2b and 2d, 
the cells develop into much longer north–south lines. 
Most significantly, the short- and long-line variations 
appearing in the ensemble with initial errors at wave-
lengths of 8 km (e.g., Figs. 2a,b) are comparable to 
those appearing in the 128-km-wavelength ensemble 
(e.g., Figs. 2c,d).

KE SPECTRA FOR THE SQUALL-LINE 
ENSEMBLES. To obtain a more quantitative com-
parison of error growth over all the members of the 
8- and 128-km ensembles, we compute the same type 
of spectral decomposition shown for Lorenz’s model in 
Fig. 1. The kinetic energy of the errors (KE′ computed 
from the difference between the horizontal velocities 
of each ensemble member and the ensemble-mean 
velocities) at a height2 of 10 km is plotted as a func-
tion of horizontal wavelength by the dashed lines 
in Fig. 3. In contrast to the situation in Fig. 1, the 
only initial kinetic energy in these simulations is 
in a horizontally uniform wind field; the spectra 
for the ensemble-mean KE therefore develop from 
zero along with the growing squall line. By 30 min 
into the simulations, both ensembles have generated 
very similar mean KE spectra (solid blue lines), but 
the error spectra (dashed blue lines) are different. In 
the 8-km ensemble, errors with similar magnitudes 
have developed at all scales, whereas in the 128-km 
ensemble, there is a pronounced maximum in KE′ at 
the scale of the initial perturbation, and much weaker 
values at other wavelengths.

Yet by 4 h, the KE′ spectra for the 8- and 128-km 
ensembles (dashed red curves) are virtually identical, 
implying that all trace of the differences in the scale 
and magnitude of the initial errors has disappeared. 
Moreover, at those wavelengths less than 25 km, the 
values of KE′ and KE are almost the same and all 
predictability in both ensembles has been lost. The 
loss of predictability in our simulations is generally 
consistent with recent assessments of the impact of 
finescale weather radar data on real-time thun-
derstorm forecasts from the National Oceanic and 
Atmospheric Administration’s (NOAA) Hazardous 
Weather Testbed (HWT) Spring Forecast ing 

2 A height of 10 km is representative of the elevations at which 
observations of atmospheric spectra were collected by Nastrom 
and Gage (1985).

1 The parameters for the numerical simulations are detailed 
in the supplement (10.1175/BAMS-D-15-00070.2).
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Experiment (Kain et al. 2010). Stratman et al. (2013) 
found that assimilating finescale radar data did not 
add skill at scales less than 40–80 km beyond forecast 
lead times of a few hours, while the analysis of Surcel 
et al. (2015) showed a somewhat more rapid loss of 
predictability.

Also of note is that by 4 h the background KE spec-
tra in Fig. 3 have developed a slope approximating 
that of the observed λ5/3 background atmospheric KE 
spectrum (Nastrom and Gage 1985; thick gray line). 
Figure 4 illustrates the growth of the background KE 
spectra at additional times ranging from 30 min to 
6 h for the ensemble with 8-km-wavelength initial 
temperature perturbations.3 At 3 h, the KE spectrum 
is similar to the observed spectrum for wavelengths 
between 15 and 100 km. By 6 h, the simulated KE 
spectrum generally parallels that of the observed 

background KE at all wavelengths longer than 15 km, 
but it is stronger than the observations by about a fac-
tor of 3, a difference that likely arises from the vigor of 
the simulated squall-line circulations and the relatively 
small size of our 512 km × 512 km domain.

Over 35 years ago, Gage (1979) and Lilly (1983) 
hypothesized that the observed λ5/3 mesoscale KE 
spectrum could be generated by deep moist con-
vection through an upscale energy cascade. Their 
hypothesis has remained controversial, with many 
researchers suggesting an alternative hypothesis 
that the spectrum is formed by a downscale energy 
cascade [see the discussion in Lindborg (2015)]. The 
growth of the KE spectra shown in Fig. 4 is certainly 
due to deep moist convection, but its detailed evo-
lution does not particularly resemble a cascade in 
which energy spreads either upscale or downscale 
through progressive exchanges with nearby scales. 
Instead there is simultaneous growth at almost all 
scales, beginning from an initial distribution that is 

FIG. 2. Synthetic radar reflectivity at hour 4 from the simulated rain fields at a height of 4 km for (a),(b) two 
members from the 8-km ensemble and (c),(d) two members from the 128-km ensemble. These plots zoom in 
on the region of active convection.

3 The spectra from the 128-km-wavelength ensemble are 
virtually identical.
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relatively flat. The initial horizontal velocity pertur-
bations are dominated by circulations in small-scale 
updrafts driven by the three warm bubbles, and as 
such they have spectra roughly similar to the flat (λ 
independent) spectrum of a delta function.

The KE′ spectra at hour 4 in Fig. 3 have far more 
power at long wavelengths than that found at similar 
times in Lorenz’s model (Fig. 1). It is difficult to make 
a detailed comparison of the relationship between KE 
and KE′ in the squall-line simulations with that for 
the Lorenz model because the background KE in the 
squall-line simulations grows with time. Nevertheless, 
by hour 3 the KE spectra in the squall-line simula-
tions have developed a slope of approximately λ5/3, 
and one can make a rough comparison with Fig. 1 
using a normalized perturbation kinetic energy KEń 
[defined mathematically in the supplement (http://
dx.doi.org/10.1175/BAMS-D-15-00070.2)] represent-
ing the value KE′ would have if the ratio KE′/KE were 
preserved while the actual background KE at a given 
time and wavelength was remapped to the observed 
mesoscale KE spectrum. Spectra for KEń  at 3, 4, and 6 h 
are plotted as a function of λ in Fig. 5. The wavelengths 
over which the error becomes saturated clearly propa-
gate upscale. Nevertheless, in contrast to the behavior 
in Fig. 1 and to that obtained with more advanced 
spectral turbulence models (Leith and Kraichnan 1972; 
Métais and Lesieur 1986), the overall error growth does 
not resemble an upscale cascade in which the error at a 
given scale remains small until those errors at slightly 
shorter wavelengths saturate. This does not, however, 

imply that the dynamics in such turbulence models 
are irrelevant, since as demonstrated by Durran and 
Gingrich (2014), the Lorenz model is capable of produc-
ing “up amplitude” growth, similar to that apparent 
for wavelengths between 30 and 60 km in Fig. 5, when 
the initial KE′ distribution is one with constant relative 
errors at all scales.

CONCLUSIONS. One cannot immediately char-
acterize the absolute initial errors in our squall-line 

FIG. 3. Error amplitude (perturbation kinetic energy density) at a height of 10 km plotted as a function of hori-
zontal wavelength from the squall-line simulations after 30 min (blue dashed line) and 4 h (red dashed line) for 
the ensemble with random initial temperature perturbations at scales of (a) 8 and (b) 128 km. Also plotted at 
the same times are the ensemble-mean kinetic energy density (solid blue and red lines) and a gray line with 
λ5/3 slope approximating background kinetic energy spectrum observed in the atmosphere.

FIG. 4. Evolution of the ensemble-mean kinetic energy 
density relative to the observed λ5/3 spectrum (gray 
line) in simulations with random 8-km-wavelength 
initial temperature perturbations. Data are plotted 
at 30 (blue), 90 (red), 180 (green), and 360 (gold) min 
into the simulations.
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simulations as meaningful relative errors because 
there is no background signal at any finite wavelength 
in the initial state. Nevertheless, to further compare 
the relative importance of large- and small-scale er-
rors in these squall-line simulations with that from 
Lorenz’s model, we assume similar error growth 
would occur if the background temperature spectrum 
in our simulations matched that given by observations, 
an assumption supported by the general agreement 
between the error growth in our results and the HWT 
forecast experiments. The observed background tem-
perature perturbations (Nastrom and Gage 1985) at 
wavelengths of 128 km are about 10 times stronger 
than those at 8 km, which would make the size of the 
random initial temperature perturbations relative to 
the background state in the 128-km ensembles one-
fortieth as large as those at 8 km. Thus, in qualitative 
agreement with Lorenz’s idealized model, our simula-
tions suggest that after 3 or 4 h, the impact of small 
relative errors at horizontal scales on the order of 
100 km would be similar to that of much larger relative 
errors at smaller scales. Weather-observing systems 
and data assimilation strategies for thunderstorm fore-
casting, therefore, may be most effective at improving 
forecasts for lead times exceeding 3–4 h if they focus 
on reducing initial errors at horizontal scales on the 
order of 100 km, and metrics for evaluating the qual-
ity of initial analyses might be best weighted toward 
larger scales rather than small features, like individual 
thunderstorm updrafts.

Current operational efforts to forecast weather pat-
terns on small scales, such as over an individual city, 
are based on the assumption that Lorenz’s idealized 

model does not apply to the real atmosphere because 
large-scale motions control the development of many 
small-scale weather features, including fronts and 
disturbances produced by mountains or land–sea 
contrasts (Anthes et al. 1985). Our results together with 
several recent studies (Nuss and Miller 2001; Bei and 
Zhang 2007; Durran et al. 2013; Durran and Gingrich 
2014; Surcel et al. 2015) suggest this paradigm requires 
modification. The large scales do indeed appear to ex-
ert significant control on small-scale weather, but that 
control also includes the introduction of the most seri-
ous initial errors. Small, but unavoidable, relative errors 
on the largest scales at which the background kinetic 
energy spectrum follows a λ5/3 slope (100–400 km) can 
rapidly propagate downscale to the smallest resolved 
features in operational weather forecasts. Errors in 
those scales subsequently propagate back upscale as 
if they had simply originated in the small scales. As 
apparent in Figs. 1–3, there may be no easy way to dis-
tinguish such behavior from a situation in which the 
errors actually originate in the smallest scales.
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