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THUNDERSTORMS DO NOT 
GET BUTTERFLIES

by Dale R. Durran and Jonathan A. Weyn

IMPLEMENTATION OF THE LORENZ 
MODEL. The mathematical formulation of the 
Lorenz turbulence model follows that described 
previously (Lorenz 1969; Rotunno and Snyder 2008). 
The curves in Fig. 1 in the main text are produced 
using Lorenz’s original dynamical formulation based 
on linearized barotropic vorticity dynamics with the 
saturation background kinetic energy spectrum given 
by Eq. (52) in Lorenz (1969). In contrast to previous 
studies (Lorenz 1969; Rotunno and Snyder 2008), a 
smooth approach to nonlinear saturation is enforced 
by solving the system of ordinary differential equa-
tions (Durran and Gingrich 2014):
	

Here n is the total number of spectral bands, and 
Zk is the ensemble mean of the kinetic energy of the 
perturbation velocities about the ensemble mean, 
integrated with respect to ln(k) over the spectral 
band at two-dimensional horizontal wavenumber k 
(the wavenumber is 2π divided by the wavelength). 
The background kinetic energy spectrum Xk is again 
integrated with respect to ln(k). A dummy variable Yk 
is used to write a second-order system of differential 
equations as a larger first-order system. Adjacent 
wavenumbers in our truncation differ by a factor of √

−
2, 

which is twice the spectral resolution used by Lorenz 
(1969) and Rotunno and Snyder (2008); we retain 40 

wavenumbers. Following Lorenz (1969), the shortest 
retained wavelength is 38 m and the longest length 
scale is L = 40,000 km; the total integrated background 
kinetic energy is set to E = 148 m2 s−2, and the dimen-
sional scale for time is LE–1/2. The MATLAB code used 
to run the Lorenz model is available from the authors.

THE SQUALL-LINE SIMULATIONS. The nu-
merical model solves the nonlinear, nonhydrostatic, 
compressible equations of motion together with a 
warm-rain microphysics parameterization (Durran 
and Klemp 1983); Coriolis forces are neglected. The 
numerical domain is periodic along both horizontal 
coordinates (thereby facilitating the spectral analysis) 
and spans a distance of 512 km in both the east–west 
coordinate x and the north–south coordinate y. The 
upper boundary permits gravity wave radiation 
(Klemp and Durran 1983; Bougeault 1983). The grid 
spacing is Δx = Δy = 1 km with Δz gradually increas-
ing from 200 m near the surface to 500 m above 
5 km. The model is integrated using a two-time-step 
algorithm in which the large time step is 3 s and the 
acoustic time step is 1.5 s.

The idealized atmospheric environment in which 
the squall line grows is similar to that in Weisman and 
Klemp (1982). A unidirectional horizontally uniform 
background wind profile is specified in which winds 
from the west increase from 0 m s−1 at the surface to 
20 m s−1 at a height of 5 km and remain 20 m s−1 at higher 
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levels. The background north–south wind component 
is zero. The vertical profile of potential temperature 
and relatively humidity (RH) for the horizontally ho-
mogeneous initial state is taken from Eqs. (1) and (2) 
in Weisman and Klemp (1982), with a constant mixing 
ratio of 14 g kg−1 between the surface and 1 km, except 
that the RH is capped at 90% for 1 ≤ z ≤ 1.4 km and at 
75% at any level above 1.4 km where Eq. (2) would yield 
a higher value (Wandishin et al. 2008).

Three localized warm bubbles with positive tem-
perature perturbations 2 K warmer than their envi-
ronment trigger the initial updrafts, which owing to 
the wind shear ultimately evolve into a line of thun-
derstorms (Skamarock et al. 1994). These bubbles are 
spheroidal with 2-K perturbations in their center, a 
10-km horizontal radius, and a 1.4-km vertical ra-
dius. Their centers are 1.4 km above the surface, and 
their (x,y) coordinates are (100, 250), (150, 300), and 
(125, 175) km. Variations in the position and strength 
of the squall line within each 25-member ensemble 
are produced by small-amplitude background per-
turbations in the surface temperature field that decay 
exponentially with height over an e-folding scale of 
1 km. In terms of potential temperature θ′, these 
perturbations have the form
	

Here the phase of the perturbation in each ensemble 
member is determined by the random numbers 
(φx,φy) in the interval [0,1]; L is either 8 km in the 
small-scale ensemble or 128 km in the large-scale 
ensemble; and x, y, and z are distances in kilometers 
along each coordinate. The amplitude a is set to 0.5 K 
for the 8-km-scale perturbations and is reduced by 
a factor of one-quarter to 0.125 K for the 128-km 
perturbations.1 The synthetic radar data displayed 
in Fig. 2 in the main text are computed from the 
simulated rain fields (Koch et al. 2005).

THE KE SPECTRUM. The ensemble-mean kinetic 
energy (KE) spectrum for the squall-line simulations 
was computed as follows. At a given vertical level, 
let ui,j,m and υi,j,m denote the zonal and meridional 

velocities, respectively, at horizontal mesh point (i,j) 
for ensemble member m. The discrete Fourier trans-
form was applied along the x coordinate to each uj,m 
and υj,m. Denoting the transform of a function φ by  
^f, and the complex conjugate by φ*, the kinetic energy 
spectral density for each j and m was computed as

	
^
KEj,m(~

k) = [^uj,m(~
k) ^u*j,m(~

k) + ^υj,m (
~
k) ^υ*j,m(~

k)].

Here, 
~
k is the (one dimensional) wavenumber along 

the x coordinate (
~
k = 2π/λx, where λx is the wavelength 

parallel to the x axis), and Nx = 512 is the total num-
ber of grid points. Then, 

^
KEj,m(~

k) was averaged over 
both j and m to give the ensemble- and meridionally-
averaged one-dimensional total KE spectrum. The 
perturbation kinetic energy spectral density KE′ is 
calculated in the same manner as KE, except that 
ui,j,m and υi,j,m are replaced with u′i,j,m = ui,j,m – ‹ui,j› and 
υ′i,j,m = υi,j,m – ‹υi,j›, respectively, where ‹φ › indicates the 
average of φ over all 25 ensemble members. Only those 
wavelengths greater than 7Δx are shown in Fig. 3 in 
the main text; 7Δx is the (slightly arbitrary) cutoff scale 
beyond which Skamarock (2004) found numerical 
dissipation excessively reduced KE in mesoscale nu-
merical models. The normalized perturbation kinetic 
energy plotted in Fig. 5 in the main text is computed as

	 , 	 (ES1)

where A is a constant mapping of the result to the 
observed mesoscale background KE spectrum.
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