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ABSTRACT

Spectra are often computed from gridded data to determine the horizontal-scale dependence of quantities

such as kinetic energy, vertical velocity, or perturbation potential temperature. This paper discusses several

important considerations for the practical computation of such spectra. To ensure that the sum of the spectral

energy densities in wavenumber space matches the sum of the energies in the physical domain (the discrete

Parseval relation), the constant coefficient multiplying the spectral energy density must properly account for

theway the discrete Fourier transformpair is normalized. The normalization factor appropriate ofmany older

FORTRAN-based fast Fourier transforms (FFTs) differs from that in Matlab and Python’s numpy.fft, and

as a consequence, the correct scaling factor for the kinetic energy (KE) spectral density differs between one-

dimensional FFTs computed using these two approaches by a factor equal to the square of the number of

physical grid points. A common algorithm used to compute two-dimensional spectra as a function of the total-

wavenumber magnitude sums the contributions from all pairs of x- and y-component wavenumbers whose

vectormagnitude lies with a series of bins. This approach introduces systematic short-wavelength noise, which

can be largely eliminated though a simple multiplicative correction. One- and two-dimensional spectra will

differ by a constant if computed for flows in which the KE spectral density decreases as a function of the

wavenumber to some negative power. This constant is evaluated and the extension of theoretical results to

numerically computed FFTs is examined.

1. Introduction

When computing spectra from observed or model data,

the main focus is often on the slope of the spectrum as a

function of wavenumber on a log–log plot. Nevertheless, if

such spectra are to be quantitatively compared with those

obtained in other studies (as in, e.g., Skamarock 2004;

Hamilton et al. 2008), it is important to be able to correctly

compute themagnitude of the energy spectral density. The

goal of this article is to facilitate such comparisons.

The discrete Fourier transform (DFT) of a vector u of

length N is often defined as

û
m
5 n

1 �
N

j51

u
j
v
(m21)( j21)
N , (1)

together with the inverse transform:

u
j
5 n

2 �
N

m51

û
m
v
2(m21)( j21)
N , (2)

where n1n2 5 1/N and, following the typical ‘‘roots of

unity’’ notation,vN 5 e22pi/N (Durran 2010). Neither the

choice of the signs in the exponents nor the distribution

of the normalization factors n1 and n2 between (1) and

(2) are standardized. The only requirement is that the

product of the normalization factors equals 1/N and

that the exponents have opposite signs. Many classi-

cal treatments of the DFT follow the convention

(n1, n2)5 (1/N, 1) (Cooley et al. 1970; Durran 2010), but

the DFT in Matlab and Python (specifically Matlab’s

FFT–IFFT pair and the default option in Python’s

numpy.fft module) follow the opposite convention

(n1, n2)5 (1, 1/N). The choice of (n1, n2) impacts the

discrete Parseval relation and as a consequence, the di-

mensional coefficients that should appear in the compu-

tation of energy spectral densities. One purpose of this

article is to clarify the factors that should appear

in dimensional atmospheric spectra, for example to com-

pare commonly computed horizontal kinetic energy (KE)

spectra in gridded models with observations (Nastrom

and Gage 1985; Cho et al. 1999). The correct dimen-

sional scaling for one-dimensional spectra is discussed inCorresponding author: Dale Durran, drdee@uw.edu
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section 2, while that for two-dimensional spectra is pre-

sented in section 3.

The second purpose of this article is to highlight a simple

technique for reducing systematic noise in the computa-

tion of two-dimensional spectra. Two-dimensional spectra

are typically evaluated as a function of total wavenumber

kh 5 (k2
x 1 k2

y)
1/2, where kx and ky are the wavenumbers

parallel to each coordinate axis, which we label as x and

y. For continuous Fourier transforms, the KE spectral

density at kh is evaluated by integrating around a ring

of radius kh centered at the origin in the kx – ky plane.

The corresponding calculation for discrete data often

follows the procedure detailed in Errico (1985) in which

the integral around a ring in the kx – ky plane is replaced

by summing up the energies of all (kx, ky) pairs that

lie with annular rings. This procedure introduces sys-

tematic noise, and as briefly noted in Tanguay et al.

(1995), such noise can be easily eliminated through

multiplication by a compensating factor, as will be dis-

cussed in section 4.

The final topic, investigated in section 5, is the differ-

ence in the magnitude of one-dimensional and two-

dimensional KE spectra computed for the same flow.

The theoretical discussion in Leith (1971) for isotropic

horizontally nondivergent flow is first generalized; then

we examine the influence of the numerical approxima-

tions that accompany the computation of discrete Fourier

transforms. Finally we compare one-dimensional and

two-dimensional KE spectra in a physically relevant di-

vergent, anisotropic flow.

Throughout the following we assume the data are

periodic. If the data are not periodic, they can be made

periodic by removing the linear trend along lines par-

allel to each coordinate axis (Errico 1985), or fitting a

two-dimensional plane to the data and then multiplying

the values near the edges by a function that smoothly

approaches zero at the boundary (Salvador et al. 1999).

Denis et al. (2002) suggest the discrete cosine transform

(DCT) offers the best approach for computing the

spectra of aperiodic fields. We do not discuss the DCT

here, but all of our formulas may be applied, with

appropriate modification, to the DCT. Indeed, the

application of the cosine transform to aperiodic data is

conceptually equivalent to imposing symmetry bound-

ary conditions at both edges of the domain, mirroring

the existing data across one symmetry boundary, and

applying a conventional Fourier transform on the ex-

panded domain.

2. One-dimensional KE spectra

We begin by considering the properties of continu-

ous fields. Neglecting the fluid density, the time- and

space-averaged KE equals the KE spectral density E(k)

integrated over positive wavenumbers:

�
u � u
2

�
5

1

L

ðL
0

u � u
2

dx5

ð‘
0

E(k) dk , (3)

where u5 (u, y) is the horizontal velocity vector,L is the

length of the domain, and the spatial average is denoted

by an overbar [Tennekes and Lumley (1972), their

(8.1.5)]. The calculations for time averaging are obvious

and will be ignored throughout the following.

Defining the continuous Fourier transform and its

inverse as

û(k)5

ð‘
2‘

u(x)e2pixk dx ,

u(x)5

ð‘
2‘

û(k)e22pixk dk ,

Parseval’s theorem for continuous Fourier transforms is

ð‘
2‘

u2 dx 5

ð‘
2‘

û(k)û*(k) dk .

Extending the definition of u(x) to [2‘, ‘] by setting u

to zero for all x ; [0, L] and using Parseval’s theorem,

(u2) 5

ð‘
2‘

û(k)û*(k)

L
dk .

Since u is real, û(k)5 û*(2k), and thus

1

2

ð‘
2‘

û(k)û*(k) dk 5

ð‘
0

û(k)û*(k) dk ,

from which it follows that the KE spectral density in (3)

may be written as

E(k)5
û(k)û*(k)1 ŷ(k)ŷ*(k)

L
.

Note that the units of û(k) are meters squared per sec-

ond, while those of E(k) are meters cubed per second

squared.

Our next goal is to find expressions for E(k) appro-

priate for discrete versions of (3). Let (uj, yj) be the set

of N gridpoint values of the x- and y-component veloc-

ities on the periodic mesh such that

x
j
5 ( j2 1)Dx, j5 1, 2, . . . ,N , (4)

where values at x5 0 match those at x5L5NDx, and
Dx is the grid spacing. FFTs are most efficient when N

is a power of 2, or the product of powers of small prime

numbers. We will therefore assume that N is even,
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in which case the shortest wavelength on the mesh

is exactly 2Dx; the largest wavenumber is exactly

kmax 5p/Dx, and the Fourier modes corresponding to

wavenumbers kmax and2kmax are linearly dependent on

the discrete mesh. As a consequence of this linear de-

pendence, when N is even, the vector of Fourier co-

efficients û contains pairs of entries for positive and

negative wavenumbers for every wavelength except

those corresponding to k5 0 and kmax. In our sub-

sequent notation, we will assume that the coefficients of

k5 0 and k5kmax are indexed in (2) when m5 1 and

m5N/21 1[Nm, respectively.

Many FORTRAN routines for computing fast Fourier

transforms, including FFTW and those in fftpack, are

unnormalized and require the user to explicitly specify n1

and n2, in which case the simplest discrete expressions for

E(k) are obtained using (n1, n2)5 (1/N, 1). Since the

case (n1, n2)5 (1/N, 1) is simplest, we consider it first;

this is the opposite convention from that in Matlab and

Python’s numpy.fft.

a. Case n1 5 1/N

If the 1/N normalization factor is attached to the

forward transform (n1 5 1/N), as derived in the appen-

dix, the discrete Parseval relation becomes

1

N
�
N

j51

u2
j 5 �

N

m51

û
m
û
m
* , (5)

implying that

1

L
�
N

j51

u2
j 1 y2j
2

Dx5
1

2
�
N

m51

(û
m
û
m
* 1 ŷ

m
ŷ
m
* )

5
1

2Dk
�
N

m51

(û
m
û
m
* 1 ŷ

m
ŷ
m
* )Dk . (6)

To identify an appropriate expression for Dk, note that

the sum on the rhs of (6) represents a numerical quad-

rature such that

�
N

m51
(û

m
û
m
*1ŷ

m
ŷ
m
* )Dk’

ðkmax

2kmax

û(k)û*(k) 1 ŷ(k)ŷ*(k) dk .

(7)

Temporarily assume û(k)û*(k)1 ŷ(k)ŷ*(k) and ûmûm* 1
ŷmŷm* are one for all k, then NDk5 2kmax 5 2p/Dx, and
thus, Dk5 2p/(NDx)5 2p/L. This is a natural choice in

which Dk is simply the smallest nonzero value of k in the

periodic domain.

Replacing the summation with twice the sum over

positive wavenumbers (except for kmax), and skipping

wavenumber zero because we can assume the mean was

removed before the spectral analysis, the discrete re-

lation (6) may be expressed in a form directly compa-

rable to (3) as

1

L
�
N

j51

u2
j 1 y2j
2

Dx 5 �
Nm

m52

~E
m
Dk , (8)

where the discrete KE spectral density is

~E
m
5

1

(11 d
m,Nm

)

û
m
û
m
*1 ŷ

m
ŷ
m
*

Dk

5
L

2p(11 d
m,Nm

)
(û

m
û
m
* 1 ŷ

m
ŷ
m
* ), (9)

and dm,Nm
is the Kronecker delta (the factor including

this term prevents the spectral power from being erro-

neously doubled at k5 kmax). From (1), the units of ûm

are meters per second, and therefore the units for ~Em in

(9) are meters cubed per second squared, matching

those for E(k) in the continuous case.

b. Case n2 5 1/N

Now suppose that following Matlab and Python’s

numpy.fft, the 1/N normalization factor is attached to

the inverse transform (n2 5 1/N). Then the discrete

Parseval relation becomes

�
N

j51

u2
j 5

1

N
�
N

m51

û
m
û
m
* , (10)

and the average KE in a domain of length L satisfies

1

L
�
N

j51

u2
j 1 y 2

j

2
Dx5

Dx

2NL
�
N

m51

(û
m
û
m
* 1 ŷ

m
ŷ
m
* ). (11)

The left side of (11) clearly approximates the left side of

(3). The right side of (11) is again a sum over both positive

and negative wavenumbers, which assuming zero ampli-

tude at wavenumber zero, can be replaced by twice the

sum over positive wavenumbers (except kmax). Recalling

that Dk5 2p/L, (11) may therefore be expressed as

1

L
�
N

j51

u2
j 1 y2j
2

Dx5 �
Nm

m52

E
^

m
Dk , (12)

where the discrete KE spectral density E
^

m for this al-

ternative normalization is1

1 The one-dimensional spectra computed in Durran and Weyn

(2016) erroneously omitted a factor of 1/p, which would have

brought those results into closer agreement with observations.
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E
^

m
5

Dx

2pN(11 d
m,Nm

)
(û

m
û
m
* 1 ŷ

m
ŷ
m
* ). (13)

Noting that

E
^

m
5 ~E

m
/N2 ,

we conclude that the different choices for normalizing

the discrete Fourier transform introduce large differ-

ences in the scaling of the KE spectral density.

3. Two-dimensional KE spectra

Let kx and ky be the dimensional wavenumbers in the

x and y directions, and û(kx, ky) and ŷ(kx, ky) be the

two-dimensional Fourier transforms of the velocity

field. Defining the total horizontal wavenumber as

kh 5 (k2
x 1 k2

y)
1/2, the integral of the two-dimensional

KE spectral density E(kh) again equals the integral of

the KE averaged over the physical domain:

�
u � u
2

�
5

ð‘
0

E(k
h
) dk

h
, (14)

where E(kh) is the integral over all pairs (kx, ky)

such that kh 5 (k2
x 1 k2

y)
1/2. To be specific, let c(u) 5

(khcosu, khsinu), then

E(k
h
)5

1

2

ð2p
0

fû[c(u)]û*[c(u)]1 ŷ[c(u)]ŷ*[c(u)]gk
h
du .

(15)

We wish to determine the discrete approximations to

E(kh) appropriate for horizontal velocities (ur,s, yr,s)

defined at grid points on the periodic mesh:

x
r
5 (r2 1)Dx, r5 1, 2, . . . ,N

x
;

y
s
5 (s2 1)Dy, s5 1, 2, . . . ,N

y
.

a. Case n1 5 1/N

The appropriate discrete Parseval relation (5) general-

izes to two dimensions in a straightforward way, such that

1

N
x
N

y

�
Nx

r51
�
Ny

s51

u2
r,s 1 y2r,s 5 �

Nx

l51
�
Ny

m51

û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* . (16)

Denoting the extent of the x and y domains asLx 5NxDx
andLy 5NyDy, and applying the same reasoning as in the

1D case, we obtain Dkx 5 2p/Lx and Dky 5 2p/Ly, al-

lowing (16) to be written as

1

L
x
L

y

�
Nx

r51
�
Ny

s51

u2
r,s 1 y 2

r,s

2
DxDy

5
L

x
L

y

8p2 �
Nx

l51
�
Ny

m51

(û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* )Dk

x
Dk

y
. (17)

The left-hand side of (17) approximates the left-hand

side of (3), but the right-hand side needs to be replaced

by a sum over the total wavenumber.

We discretize the 2D wavenumber in multiples of

the maximum one-dimensional wavenumber, Dkh 5
max(Dkx, Dky), such that

k
p
5 pDk

h
, p5 1, 2, . . . ,N

max
,

where Nmax 5
� ffiffiffi

2
p

max(Nx/2, Ny/2)
�
. Defining R(p) as

the set of wavenumber indices (l, m) satisfying

k
p
2Dk

h
/2# (k2

xl
1 k2

ym
)1/2 , k

p
1Dk

h
/2 , (18)

(17) may be written as

1

L
x
L

y

�
Nx

r51
�
Ny

s51

u2
r,s 1 y2r,s

2
DxDy 5 �

Nmax

p51

~E(k
p
)Dk

h
, (19)

where

~E(k
p
)5

L
x
L

y
min(Dk

x
,Dk

y
)

8p2 �
l,m2R(p)

(û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ).

(20)

Note that the units of ~E(kp) are again meters cubed per

second squared. This summation over total wavenumber

is similar to that in Errico (1985), except that instead of

choosing Dkh to be min(Dkx, Dky), we set it equal to the

maximum to reduce the noise that would arise using the

narrower spectral band.

For an isotropic grid with Dx5Dy and Lx 5Ly [L,

Dkx 5Dky 5Dkh,

~E(k
p
)5

L

4p
�

l,m2R(p)
(û

l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ). (21)

We would only plot the spectrum ~E(kp) through

wavenumber kh 5NDkh/2 because the data for higher

wavenumbers are incomplete on the discrete mesh.

b. Case n2 5 1/N

Parseval’s relation becomes
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Ny

m51

û
l,m
û
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* 1 ŷ

l,m
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* ,

Using the notation introduced in section 3a, the average

KE in the domain satisfies

1

L
x
L

y

�
Nx

r51
�
Ny

s51

u2
r,s 1 y2r,s

2
DxDy

5
DxDy

2N
x
N
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x
L

y

�
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l51
�
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m51

û
l,m
û
l,m
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l,m
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l,m
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5
DxDy

8p2N
x
N

y

�
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l51
�
Ny

m51

(û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* )Dk

x
Dk

y
. (22)

Summing over annular rings in the kx – ky plane, one

obtains

1

L
x
L

y

�
Nx

r51
�
Ny

s51

u2
r,s 1 y2r,s

2
DxDy 5 �

Nmax

p51

E
^
(k

p
)Dk

h
, (23)

where

E
^
(k

p
)5

DxDymin(Dk
x
,Dk

y
)

8p2N
x
N

y

�
l,m2R( p)

(û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ).

(24)

For an isotropic square grid,

E
^
(k

p
)5

L

4pN4 �
l,m2R(p)

(û
l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ), (25)

implying that in the case of two-dimensional spectra,

E
^
(k

p
)5 ~E(k

p
)/N4 .

4. Reducing discretization noise in 2D spectra

The summation over annular rings in the kx – ky plane

computed, for example in (20), introduces systematic

noise in 2D spectra because the number [or count C(p)]

of wavenumber pairs in set R(p) does not increase

smoothly with kp. As noted in Tanguay et al. (1995), one

can compensate for this systematic noise by multiplying

the KE spectral density at each discrete kp by

2pk
p

Dk?

1

C(p)
, (26)

where Dk? 5 min(Dkx, Dky). Given that Dkh 5
max(Dkx, Dky) is the discrete grid interval along the radial

direction, Dk? may be interpreted as the effective grid

interval around the circumference of the annulus (18) in

the kx – ky plane. Thus, (26) represents the ratio of the

number of wavenumber pairs that would be expected

around a ring of radius kp divided by the actual number of

pairs falling in the annulus (18).

A few previous studies also mention the use of factors

similar to (26) to reduce noise (Bartello 1995;Waite 2016),

but it is unclear how commonly this type of compensation

has been employed. In particular, it is not discussed in

Errico (1985), which gives a detailed algorithm for the

computation of two-dimensional spectra that has been

frequently cited. In the remainder of this section, we

document the significant improvements that can be

achieved using such compensation and suggest a modest

improvement to the formulation in (26). Note that the

discrete Parseval relation no longer holds after multiply-

ing the spectral densities by (26).

In an isotropic square domain, Dk? 5 2p/L and the

factor in (26) may be alternatively expressed Lkp/C(p).

Figure 1 shows Lkp 5NkpDx plotted as a function of

kpDx as the black dashed line terminating at the value of

kpDx corresponding to a 2Dx wave. Also shown in Fig. 1

is C(p)/N for the case N5 128, which roughly follows

the line NkpDx over the interval [0, p] and then quickly

falls to one at kpDx5
ffiffiffi
2

p
p because of the rapid increase

in the number of missing (kx, ky) pairs at wavelengths

shorter than 2Dx. The fluctuations of C(p)/N about the

line NkpDx are not random; they leave an imprint on

FIG. 1. Normalized number of wavenumber pairs within each

total wavenumber bin C(p)/N plotted as a function of kpDx, for
a square domain with 128 grid points along each coordinate (blue).

The black dashed line shows the expected number of wavenumber

pairs for each kpDx over the interval 0#kpDx#p.
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two-dimensional spectra that are computed using the

summation procedure in (20), and they can be removed

through multiplication by the factor (26).

The distribution of the data from two-dimensional

FFTs is very nonlinear in spectral space, with just a few

widely spaced points corresponding to the smallest

wavenumbers, and many closely spaced points at larger

wavenumbers. To improve the performance of the pre-

ceding noise compensation at very small wavenumbers,

where the numerical resolution as a function of kh is very

coarse, it is helpful to replace kp in (26) by the average kh

for all wavenumber pairs in R(p), which will be denoted

by kp. Then the noise-compensated spectral density

corresponding to (20) would become

~E
c
(k

p
)5

L
x
L

y
k
p

4pC(p)
�

l,m2R( p)
(û

l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ). (27)

The effectiveness of this noise removal procedure is

illustrated in two examples. First consider a randomly

distributed scalar variable with zero mean defined on a

1283128 gridpoint square domain. The energy spectral

density E (kp), computed with and without multiplica-

tion by

2pk
p

Dk?

1

C(p)
, (28)

and averaged over 20 or 200 samples, is plotted

as a function of kpDx in Fig. 2. As expected for

two-dimensional white noise, the energy spectral den-

sity increases roughly linearly with wavenumber over the

interval [0, p]. Whether averaged over 20 or 200 sam-

ples, the uncompensated spectra (blue lines) look quite

similar, and show significant noise. On the other hand,

the energy spectral densities compensated through

multiplication by (28) look much smoother and the re-

maining noise is greatly reduced as the sample size is

increased from 20 to 200. Multiplication by (28) also

corrects these spectra for wavelengths shorter than 2Dx
(i.e., for wavenumbers in the range p#kpDx#

ffiffiffi
2

p
p),

but one should not attach confidence to results for such

wavelengths in practice.

Figure 3 shows the mean horizontal KE spectral

density in a 20-member ensemble of numerical simula-

tions of idealized squall lines, initialized with slightly

different humidity fields, conducted using a 512 3 512

periodic domain. In addition to the ensemble aver-

age, the spectra were averaged over the vertical layer

10# z# 12 km (Weyn and Durran 2017, their Fig. 6e).

The blue curve shows the spectra computed using

Python’s numpy.fft and (25); the red curve shows the

same result, shifted down by a factor of 10 for visibility,

after compensating for the discretization noise by mul-

tiplying by the factor (28), in which case the compen-

sated KE spectral density is

E
^

c
(k

p
)5

L2k
p

4pN4C(p)
�

l,m2R( p)
(û

l,m
û
l,m
* 1 ŷ

l,m
ŷ
l,m
* ). (29)

FIG. 2. Two-dimensional energy spectral density for random white noise in a 128 3 128 square domain av-

eraged over (a) 20 samples and (b) 200 samples. The blue line is the result of the standard summation over

annular rings in the wavenumber domain; the red line shows the result after multiplication by the noise com-

pensating factor in (28), shifted down by a factor of 10 for clarity. The top axis is labeled in units of wavelength

divided by Dx.
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Despite the vertical and ensemble averaging, the un-

compensated KE spectrum remains noisy. The compen-

sated KE spectrum, on the other hand, is quite smooth.

5. Relationship between one- and two-dimensional
power-law spectra

If the two-dimensional KE spectral density of a

nondivergent isotropic flow obeys the power-law

E(kh) 5 a2k
b
h , for b, 0, one-dimensional KE spectral

densities obey the same power law, with a different con-

stant of proportionality [i.e., E1(kx)5a1k
b
x ]. Most atmo-

spheric observations are analyzed along lines (e.g., along

an aircraft flight track). If one wishes to compare two-

dimensionalKE spectra fromamodelwith observations of

one-dimensional spectra, one should correct for the dif-

ference between a1 and a2. Leith (1971) showed that

E
1
(k

x
)5

2

p

ð‘
kx

E(k
h
)

(k2
h 2 k2

x)
1/2

dk
h
, (30)

or letting s5 kh/kx, ds5 dkh/kx, and substituting for

E(kh),

E
1
(k

x
)5

2a
2
kb
x

p

ð‘
1

sb

(s2 2 1)1/2
ds . (31)

Leith (1971) noted that for b523, a1 5a2/2, but did

not consider other values of b. For b, 0 the integral in

(31) converges, giving

E
1
(k

x
)5

G 2
b

2

� �
ffiffiffiffi
p

p
G

1

2
2

b

2

� �E(k
x
) . (32)

If b521, a1 5a2, and in the important case b525/3,

a1 ’ 0:713a2 (Lindborg 1999; Durran and Gingrich 2014).

The analytic result (32) does not exactly hold for

spectra computed from gridded data due to numerical

errors. To assess the nature of these errors, non-

divergent flows were computed from a streamfunction

of the following form:

ĉ(k
x
, k

y
)5 eif(k2

x 1 k2
y)

(b23)/2 ,

where (kx, ky) are the wavenumber pairs for the discrete

data, f 2 [2p, p] is a random phase, and the condition

ĉ(kx, ky)5 ĉ*(2kx, 2ky) is enforced to ensure c(x, y) is

real. According to (15), the horizontal velocities

û 5 2ik
y
ĉ, ŷ5 ik

x
ĉ ,

will yield a KE spectral density for which E(kh)} k b
h .

One- and two-dimensional KE spectral densities,

computed from single realizations of this idealized ve-

locity field on a 5123 512 isotropic mesh, are plotted in

Fig. 4 for the cases b523, 25/3, and 21. The 1D

spectral densities were computed from (13) using one-

dimensional transforms along the x coordinate at each of

the 512 y-coordinate values, and then averaged over y.

The 2D spectral densities were computed from (29) and

scaled by the factor a1(b)/a2(b).

As evident in Fig. 4, the a1/a2 scaling does a good job

of mapping the 2D spectra exactly onto the corre-

sponding 1D curve. Nevertheless, the 2D spectra fall

slightly below the 1D spectra and the expected kb
p line at

very small wavenumbers. This is due to the previously

discussed issue of coarse numerical resolution at very

small wavenumbers. In contrast, at very large wave-

numbers, it is the 1D spectra that fall below the kb
p line,

and the discrepancy becomes much larger as b increases

from 23 to 21. This difference arises because, instead

of extending to infinity, the numerical equivalent of

the integral in (30) is effectively truncated at

kx 5 kmax 5p/Dx. When b523, the contribution from

the unresolved high wavenumbers, and the high-

wavenumber difference between the 1D and 2D spectra

is much smaller than when b521. Although the high-

wavenumber falloff in the amplitude of the 1D spectra in

FIG. 3. Two-dimensional KE spectral density from idealized

squall-line simulations. The blue line is the result of the standard

summation over annular rings in the wavenumber domain. The red

line shows the result after multiplication by the noise-compensating

factor (28) and is shifted down by a factor of 10 for better visibility.

The portion of the spectrum corresponding to wavelengths shorter

than 7Dx is shaded. The thick gray line follows a k25/3 slope.
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Fig. 4 is much weaker than that caused by numerical dis-

sipation in typical numerical simulations (as illustrated,

e.g., in Fig. 3), it is worth noting that amodest falloff should

be expected at high wavenumbers even in the absence of

dissipation.

The derivation of (32) assumes nondivergent two-

dimensional isotropic flow, but the relationship between

a1 and a2 can also hold in at least some completely di-

vergent, anisotropic flows. This good behavior is illustrated

in Fig. 5, which compares 1D and 2D spectra from the en-

semble of squall-line simulations already considered in

Fig. 3. The total flow is decomposed into divergent and

rotational components as described in Weyn and Durran

(2017), who also noted that the divergent component

closely follows a k25/3
h spectrum. Scaling the 2D divergent

KE spectrum such that a1 5 0:713a2 maps the 1D and 2D

spectra onto almost the same curve. In contrast, the rota-

tionalKEdoes not followapower lawas closely (i.e., it does

not plot as a straight line), and the slopes of the 1D and 2D

spectra are not as similar as those for the divergent winds.

6. Conclusions

In this paper we have considered the computation of

horizontal KE spectra as our primary example, but

equivalent expressions apply when computing the

spectrum of any scalar variable. The correct dimensional

scaling of the energy density spectra depends strongly on

the normalization used in the discrete Fourier transform

routines. The ‘‘traditional’’ choice of n1 5 1/N, n2 5 1 in

(1) and (2) leads to the relatively intuitive expressions

(9) and (20) for the one- and two-dimensional KE

spectral density, respectively. Matlab and Python’s

numpy.fft routines use the alternative normalization

(n1, n2)5 (1, 1/N) and as a consequence, the corre-

sponding KE spectral densities (13) and (24) differ for

those computed with the traditional choice by factors of

N2 in the one-dimensional case and N4 in a square two-

dimensional domain.

Two-dimensional spectra computed by summing over

wavenumber pairs (kx, ky) in annular bins exhibit sys-

tematic noise owing to the nonsmooth increase in the

count of wavenumber pairs in each bin as the total

wavenumber kh increases. One can compensate for this

noise by multiplying the energy spectral density at each

discrete kh by the factor (28). If the underlying data are

sufficiently smoothed by ensemble, temporal, or spatial

averaging, the improvement produced by this procedure

can be pronounced.

If the two-dimensional KE spectral density is pro-

portional to kb
h and b, 0, one-dimensional spectral

densities for the same flowwill follow the same kb
h power

FIG. 5. One-dimensional (dashed) and two-dimensional

(dotted) KE spectral densities plotted as a function of kxDx
and kpDx, respectively, for the ensemble of squall-line simula-

tions shown in Fig. 3. Black curves are the full KE; blue curves

are the KE of the divergent component, reduced by a factor of

10 for visibility; and red curves are the KE of the rotational

component, reduced by a second factor of 10. The top axis is

wavelength in units of Dx.

FIG. 4. One-dimensional (dashed) and two-dimensional (dotted)

KE spectral densities plotted as a function of kxDx and kpDx, re-
spectively, for nondivergent velocity fields analytically specified on

an isotropic 5123 512 mesh to follow k23
h (red), k25/3

h (blue), and

k21
h (green) spectral slopes. The blue lines are shifted up by a factor

of 10 for better visibility. The top axis is labeled in units of wave-

length divided by Dx.
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law, but with a different constant of proportionality

given by (32). This theoretical result is formally derived

for isotropic nondivergent flows, but was found to also

work well for a divergent anisotropic example. In the

discrete case, the truncation of the data at some maxi-

mum wavenumber leads to a modest decrease in the

one-dimensional spectral density relative to the corre-

sponding two-dimensional value at high wavenumbers.

Nevertheless, when b525/3 the falloff at high wave-

numbers is much weaker than that produced by nu-

merical dissipation in typical atmospheric models.
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APPENDIX

The Discrete Parseval Relation

A typical derivation of the discrete Parseval theorem

is provided here to help the reader appreciate the impact

of different choices for n1 and n2. From (2) and our

previously defined notation,

u
j
5 n

2 �
N

m51

û
m
e2pi(m21)( j21)/N . (A1)

Allowing for complex values of uj, which is the most

general case (and required as part of two-dimensional

Fourier transforms),

ju
j
j2 5ju

j
u
j
*j

5 n2
2

 
�
N

m51

û
m
e2pi(m21)( j21)/N

! 
�
N

m051

û
m0* e22pi(m021)( j21)/N

!

5 n2
2 �

N

m51

û
m

 
�
N

m051

û
m0* e2pi(m2m0)( j21)/N

!
.

Thus,

�
N

j51

ju
j
j2 5 n2

2 �
N

m51
�
N

m051

û
m
û
m0* �

N

j51

(e2pi(m2m0)/N)( j21) . (A2)

Using the finite sum of a geometric series

11 q1 q2 1 � � � 1 qN 5
12 qN11

12q
,

for m 6¼ m0 the last summation in (A2) becomes

�
N

j51

(e2pi(m2m0)/N)( j21) 5
12 e2pi(m2m0)

12 e2pi(m2m0)/N 5 0.

If m5m0, the last summation in (A2) is simply N, and

therefore (A2) reduces to

�
N

j51

ju
j
j2 5Nn2

2 �
N

m51

û
m
û
m
* , (A3)

showing that the choice n2 5 1 yields (5), whereas

n2 5 1/N gives (10).
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