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ABSTRACT

Recent work has suggested that modest initial relative errors on scales of O(100) km in a numerical

weather forecast may exert more control on the predictability of mesoscale convective systems at lead

times beyond about 5 h than 100% relative errors at smaller scales. Using an idealized model, the pre-

dictability of deep convection organized by several different profiles of environmental vertical wind shear

is investigated as a function of the horizontal scale and amplitude of initial errors in the low-level moisture

field. Small- and large-scale initial errors are found to have virtually identical impacts on predictability at

lead times of 4–5 h for all wind shear profiles. Both small- and large-scale errors grow primarily up in

amplitude at all scales rather than through an upscale cascade between adjacent scales. Reducing the

amplitude of the initial errors improves predictability lead times, but this improvement diminishes with

further reductions in the error amplitude, suggesting a limit to the intrinsic predictability in these simu-

lations of slightly more than 6 h at scales less than 20 km. Additionally, all the simulated convective systems

produce a k25/3 spectrum of kinetic energy, providing evidence of the importance of the unbalanced, di-

vergent gravity wave component of the flow produced by thunderstorms in generating the observed at-

mospheric kinetic energy spectrum.

1. Introduction

The problem of mesoscale predictability in numeri-

cal weather forecasts is becoming increasingly impor-

tant as computational resources allow the simulation of

progressively finer-scale atmospheric features. It is also

of societal importance, as the accurate prediction and

localization of severe weather, including flash flooding

and tornadoes, is vital to saving lives and property.

Nearly 50 years ago, Edward Lorenz proposed the idea

that certain deterministic fluid systems with many

scales of motion, such as the atmosphere, have a finite

range of predictability that cannot be extended by re-

ducing the magnitude of the initial errors to any value

greater than zero (Lorenz 1969). Although Lorenz

provided a discussion of uncertainties caused by the

flapping of seagull wings, which was eventually recast

as the ‘‘butterfly effect,’’ he did not state that the initial

errors constraining the intrinsic predictability of the

atmosphere need to be small in scale. Indeed Lorenz’s

original paper described a pair of experiments suggesting

that, at anything beyond extremely short forecast lead

times, the ‘‘intrinsic’’ limits to predictability were insensi-

tive to the horizontal scale of equal absolute-amplitude

initial errors.

In the context of the Lorenz model for a system with a

background kinetic energy (KE) spectrum that follows a

k25/3 power law, where k is the horizontal wavenumber,

the insensitivity to the scale of the initial errors arises

because large-scale errors propagate downscale very

rapidly (Rotunno and Snyder 2008), saturate the error in

the smallest scales, and then propagate back up scale as

if they had simply originated at small scales (Lorenz

1969). The practical importance of initial large-scale

errors was emphasized by Durran and Gingrich (2014),

who found that the initial-condition perturbations in

hindcast convection-permitting ensemble simulations of

East Coast snowstorms were strongest at the longest

wavelengths, that those perturbations tended to grow

simultaneously at all wavelengths rather than through

an upscale cascade, and that the highly idealized Lorenz

model could qualitatively reproduce such ‘‘up ampli-

tude’’ error propagation if initialized with a roughly

similar error spectrum.

Durran and Weyn (2016, hereafter DW16), tested

whether the same insensitivity to the horizontal scaleCorresponding author: Jonathan A. Weyn, jweyn@uw.edu
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of initial errors might apply to deep moist convection,

which is often thought to be particularly effective at

transferring small-scale perturbations to larger scales

(Zhang et al. 2006; Hohenegger and Schär 2007).

DW16 compared the sensitivity of idealized squall-line

simulations to the presence of initial potential tem-

perature perturbations at wavelengths of 5.7 and 90 km

and found the ensemble spread was somewhat more

sensitive to perturbations at the longer wavelength.

DW16 also showed that the idealized squall lines,

growing in an environment with no background KE

at any finite wavelength, were able to generate an

ensemble-averaged background horizontal KE spec-

trum similar to the k25/3 spectrum observed in the at-

mosphere by aircraft at wavelengths less than about

400 km (e.g., Nastrom and Gage 1985; Lindborg 1999;

Cho and Lindborg 2001). This result, which was con-

firmed by Sun et al. (2017), is particularly relevant to

the study of mesoscale predictability because intrinsic

limits to the predictability of idealized turbulent flows

only occur when the system supports a background

KE spectrum with a slope shallower than k23 (Lorenz

1969; Rotunno and Snyder 2008). DW16 also sug-

gested that neither the KE of the perturbations nor

the background KE developed through a cascade in

which the primary transfer of energy occurs between

adjacent scales.

The goal of this paper is to assess the predictability of

mesoscale convective systems (MCSs) as organized by

varying amounts of vertical wind shear in an idealized

horizontally homogeneous environment. The intrinsic

predictability of the simulated storms is investigated by

repeatedly reducing the magnitude of the initial errors.

In all cases we consider ensemble simulations in which

the surface and near-surface water vapor field is per-

turbed by the addition of either a large- or small-scale

monochromatic square wave. We also examine the

evolution of the background KE spectra produced by

these systems, its distribution as a function of altitude,

and the extent to which it is dominated by horizontally

divergent or rotational flows.

The rest of the paper is organized as follows. Section 2

provides a detailed description of the model configura-

tion and the initial state. Section 3 includes a description

of the evolution of MCSs in different environments and

the differences between ensemble members. Section 4

provides a discussion of the growth of errors in the

simulations, while section 5 discusses dependence of

predictability on the amplitude of the initial perturba-

tions. Section 6 describes the decomposition of the wind

fields into divergent and rotational components and

their associated spectra. Completing the paper are a

discussion in section 7 and conclusions in section 8.

2. Model configuration

A nonhydrostatic cloud-resolving model (Durran and

Klemp 1983) is used to generate six ensembles of 20

members each. A pair of ensembles is produced for each

of three different background vertical wind profiles

consisting of unidirectional horizontal winds linearly

increasing with height from 0ms21 at the surface to a

maximum of 10, 20, and 30ms21 at a height of 5 km. The

background thermodynamic profiles (Fig. 1) used in all

three cases are similar to that of Weisman and Klemp

(1982), but with a few changes made in an effort to

simulate a more realistic severe weather environment.

First, the temperature profile in the boundary layer is

steepened such that the lapse rate is 9.5K km21 from

the surface to 1 km. A shallow 300-m isothermal layer

acts as a small capping inversion above the nearly dry

adiabatic boundary layer. Second, the temperature pro-

file follows (1) in Weisman and Klemp (1982) above

the cap, except that the potential temperature of the

FIG. 1. Skew T–logp plot of the thermodynamic sounding used to

initialize themodel simulations. The environmental temperature (red

line), dewpoint with 75% cap above the boundary layer (solid green

line), dewpoint with 85% cap above the boundary layer (dashed

green line), and surface-based parcel temperature (black line) are

shown. The ‘‘10’’ ensembles use the dashed dewpoint profile, while

the ‘‘20’’ and ‘‘30’’ ensembles use the solid dewpoint profile.
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stratosphere at 12km is decreased to 337K. This increases

the surface-based convective available potential energy

(CAPE) to about 2800m2 s22 and slightly steepens the

upper-tropospheric lapse rate. Third, the relative hu-

midity profile follows (2) in Weisman and Klemp (1982),

except that it is limited to 75% above the 1-km height of

the boundary layer, where the equation would otherwise

yield a higher value1 (Wandishin and Stensrud 2008).

Below 1km, the water vapor mixing ratio is fixed at

14gkg21. The combination of a well-mixed boundary

layer, a shallow cap above the boundary layer with drier

air, and a steeper upper-tropospheric lapse rate make this

thermodynamic sounding more representative of severe

weather environments (Bluestein 1993, 444–463).

Individual simulations are made on a 512km 3
512km doubly periodic horizontal domain at 1-km

horizontal resolution. There are 46 vertical levels from

the ground to 17 km in height, with a vertical grid

spacing of 40m near the surface stretching to 500m at

5 km above the surface. There is no upper damping

layer; instead, gravity waves are radiated through the

upper boundary using the formulation in Klemp and

Durran (1983) and Bougeault (1983). A simple first-

order-closure surface friction parameterization (Zhang

and Anthes 1982; Gaber�sek and Durran 2006) with

surface momentum fluxes but no surface heat fluxes is

used, which, along with the high near-surface vertical

resolution, improves the treatment of cold pool dy-

namics and other boundary layer processes. A warm-

rain Kessler microphysics scheme is used. There is no

Coriolis force. The integration time step is 2 s, with an

acoustic time step of 1 s, and the simulations are run for

6 h. In all ensemble members, three identical warm

bubbles 2K warmer than the environment produce the

initial updrafts, which subsequently evolve into an or-

ganized MCS owing to the wind shear. The bubbles are

spheroidal with a 10-km horizontal radius and 1.4-km

vertical radius, centered 1.4 km above the surface and

spatially located at (x, y) points of (100, 250), (125, 175),

and (150, 300) km.

The methodology used to produce the ensembles

is similar to that of DW16, but the perturbed field is

the water vapor mixing ratio qy instead of the poten-

tial temperature. To produce variability in the strength

and position of the storms, initial perturbations of the

form

q0
y 5 ae2z/H sin 2p

�x
L
2f

x

�� �
sin 2p

�y
L
2f

y

�� �
, (1)

where a is the perturbation amplitude,H is the e-folding

height scale, and L is the horizontal perturbation scale,

are added to the background water-vapor field. The

phasesfx andfy (0#f, 1) are generated randomly for

each ensemble member, and hence the differences be-

tween ensemble members originate in the difference in

phase between the perturbations and the initial warm

bubbles. Perturbing the moisture field has several im-

portant advantages over perturbing the potential tem-

perature field. First, because water vapor perturbations

contribute a much smaller fraction to vertical buoyancy

forces than temperature perturbations, the moisture

perturbations do not directly produce propagating

waves. Second, by the same reasoning, the moisture

perturbations have a much smaller effect on the differ-

ence between the surface-based CAPE of air parcels

with positive perturbations versus those with negative

perturbations. These advantages combine to reduce the

likelihood of initiating spurious convection directly from

the perturbations.

Each pair of ensembles consists of an ‘‘S’’ ensemble

with L5 8 km and an ‘‘L’’ ensemble withL5 128 km to

simulate the effects of small- and large-scale initial er-

rors, respectively. It should be noted that, because of the

square-wave structure of the perturbations, the true

wavelengths of the perturbations are 221/2L or about 5.7

and 90km, respectively. The perturbation vertical scale

height is H 5 1km, and the amplitude of the perturba-

tions is a 5 0.1 g kg21 in all ensembles.2 The six en-

sembles will hereinafter be referred to by the total

amount of vertical wind shear (10, 20, or 30) and ‘‘S’’ or

‘‘L’’ to denote the perturbation scale. For example, the

20S ensemble is initialized with 20ms21 of total vertical

wind shear and small-scale perturbations.

3. Evolution of MCSs and ensemble variability

Because of the different amounts of wind shear, the

evolution of the MCSs produced in the ensemble sim-

ulations with 10, 20, and 30m s21 of vertical wind shear

differs dramatically. What follows is a brief overview of

the MCSs in each case intended to elucidate some dif-

ferences in behavior.

When the vertical wind shear is 10ms21 (the ‘‘10’’ en-

sembles), the initial thunderstorms produced by the warm

bubbles are stronger than those in the other ensembles.

These storms dissipate about 2h into the simulation as

surface cold pool interactions and gust-front lifting pro-

duce the next round of convection. This second round

1 To producemore sustained convection, this limit is only 85% in

the 10m s21 shear sounding.

2With the exception of those with reduced perturbation ampli-

tudes; see section 5.
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becomes an organized system with sustained gust-front

lifting ahead of the main convective line and continues to

strengthen over time. Scattered updrafts trail behind the

main line. Figure 2 shows synthetic composite radar re-

flectivity for four different ensemble members in the ‘‘10’’

ensembles at 5h into the simulations. Figures 2a and 2b

show two members from the 10S ensemble, and Figs. 2c

and 2d show two members from the 10L ensemble. The

ensemble members were selected to show the greatest

range of solutions among simulations produced by the in-

troduction of the moisture perturbations.3 Figures 2a and

2b show MCSs with comparatively shorter and longer

north–south extent, respectively, and Figs. 2c and 2d show

this difference mirrored in the 10L ensemble. Hence, the

effect of the initial moisture perturbations on the MCSs is

reflected similarly in the small- and large-scale ensembles.

When the wind shear is increased to 20ms21 (the ‘‘20’’

ensembles), the initial thunderstorms undergo splitting at

around 1h. The original cells slowly dissipate by about 3h,

producing aminimum inKEat that time as new convection

begins to grow, again from cold pool interactions. The

storm system strengthens as it organizes into a well-defined

squall line by about 4.5h. Similar variability is found among

the members of the large- and small-scale ensembles as

suggested in Fig. 3, which shows four ‘‘20’’ ensemble

members in the same configuration as the previous figure.

The comparatively shorter and longer squall lines in the two

20S ensemble members shown in Figs. 3a and 3b are mir-

rored in the two 20L ensemble members in Figs. 3c and 3d.

Finally, at the strongest shear of 30ms21 (the ‘‘30’’ en-

sembles), the initial thunderstorm cells likewise undergo a

splitting sequence. Unlike in the other simulations, how-

ever, the initial cells do not dissipate, and instead new

FIG. 2. Synthetic composite radar reflectivity (colors) and anvil-level (9–12 km) maximum cloud water content

[contoured at 1 3 1025 (light gray) and 1 3 1021 g kg21 (dark gray)] at 5 h for (a),(b) two members of the 10S

ensemble and (c),(d) twomembers of the 10L ensemble. There is no active convection outside the plotted subdomain.

3 In each ensemble, the organization and distribution of the

convective cells among all 20 members falls roughly evenly along a

spectrum between the extremes illustrated in Figs. 2–4.
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convection builds up a strong squall line along the original

cells. This squall line remains strong throughout the sim-

ulation and propagates over 400km in 6h, wrapping

around the periodic domain. The 5-h composite reflectivity

for four members is shown in Fig. 4, again in the same

configuration as the previous two figures. The gross phys-

ical differences between the members of the 30S and 30L

ensembles are much more subtle than those among the

‘‘10’’ and ‘‘20’’ ensembles, although there are small-scale

variations in the locations of individual cells that, as will be

discussed in the next section, keep the KE of the pertur-

bation velocities about the ensemble mean quite large.

Sun et al. (2017) found that, in ensemble simulations

of deep convection very similar to those in DW16 and

this study, convective mixing results in a net loss of total

KE in themean flow. Figure 5 shows the evolution of the

domain-averaged density-weighted KE, (1/2)r(u2 1 y2),

normalized by the total density-weighted KE of the

initial mean flowKEB for comparison across ensembles

with different vertical wind shear. A loss of total KE

occurs in all ensembles, suggesting that the convection

extracts energy from the mean flow (Sun et al. 2017).

The convection in simulations with 30m s21 of wind

shear is most efficient at reducing the normalized KE.

4. Growth of errors

To quantify the growth of the initial perturbations in

the ensemble simulations, we analyze the spectra of total

and perturbation (or error) horizontal KE. On the

doubly periodic horizontal domain, the horizontal KE

for a single ensemble member is calculated as follows.

At a given height and time, denoting the zonal and

meridional velocities of themth ensemblemember as um
and ym, respectively,

4 and denoting the two-dimensional

FIG. 3. As in Fig. 2, but for (a),(b) two members of the 20S ensemble and (c),(d) twomembers of the 20L ensemble.

4 The initial basic-state velocities are subtracted from thewinds for all

analyses. This makes no difference to the spectral analysis because the

horizontally uniform basic state only has a wavenumber-0 component.
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discrete Fourier transform of a function f as f̂ and the

complex conjugate as f*, the total (background) two-

dimensional KE spectral density is

dKE
m
(k

h
)5

DxDyDk

8p2n
x
n
y

[û
m
(k

h
)û

m
* (k

h
)1 ŷ

m
(k

h
)ŷ

m
* (k

h
)] ,

(2)

where kh is the magnitude of the horizontal wave-

number, nx and ny are the number of grid points in the

zonal andmeridional directions, respectively, and Dx and
Dy are the horizontal grid spacing in the zonal and me-

ridional directions, respectively.5 The spectral density at

each individual horizontal wavenumber (kx, ky) is added

to the bin for which kh 2Dk/2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
# kh 1Dk/2,

where Dk5 2p/512 km21 is the smallest resolved

wavenumber corresponding to a full-domain wave. The

perturbation kinetic energy spectral density dKE0
m is also

calculated from (2), but the velocities are replaced by the

difference from the ensemble mean: that is, u0
m 5 um 2 u,

where the overbar denotes the ensemble mean. The

values of dKE and dKE0 are then computed as the average

of dKEm and dKE0
m over all ensemble members.

Figure 6 shows the total and perturbation KE spectra

for all six ensembles averaged over heights of 10–12 km,

the level of thunderstorm anvil outflow.6 Wavelengths

shorter than 7km (7Dx), indicated by shading, show a

steep falloff of KE where numerical dissipation pro-

duces the strongest damping (Skamarock 2004). The

FIG. 4. As in Fig. 2, but for (a),(b) twomembers of the 30S ensemble and (c),(d) two members of the 30L ensemble.

5 The leading factor in (2) is appropriate for fast Fourier trans-

forms computed using Matlab or Python, which are normalized

through division by the total number of points in the inverse

transform step [when u(x) is recovered from û(k)] (Durran et al.

2017, manuscript submitted to Mon. Wea. Rev.).

6 As shown in Fig. 12, the anvil-outflow level is where KE is

greatest and also roughly represents the same altitudes at which the

atmospheric spectrum was measured (Nastrom and Gage 1985).
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panels in each column correspond to the ensembles with

different vertical wind shear, increasing from left to

right, and those in the top (bottom) row correspond to

the S (L) ensembles. The spectra of total KE, repre-

sented by solid lines at times of 1, 3, and 5h, is similar in

all ensembles and virtually identical between corre-

sponding S and L pairs across the three vertical wind

shear cases. At 1 h, the initial convection has produced a

k25/3 KE spectrum for scales between about 7 and 60km

in all ensembles. By 5 h, the k25/3 spectrum extends to all

resolved scales in all ensembles, indicating, as noted in

DW16, that moist convection alone can produce a

background KE spectrum whose slope matches that of

the observed atmospheric mesoscale KE spectrum7

(Nastrom and Gage 1985). Total KE is greatest in the

‘‘30’’ ensembles and least in the ‘‘20’’ ensembles.

The dashed lines in Fig. 6 show perturbation kinetic

energy (KE0) at the same times as the total KE.Here, we

observe an important difference in the 1-h spectra be-

tween corresponding S and L ensemble pairs. In the S

ensembles, most notably in the 10S and 20S ensembles,

there is a pronounced maximum in KE0 at wavelengths
between about 10 and 30km where the initial error has

grown upscale from the initial perturbations at a wave-

length of 5.7 km. KE0 falls off rapidly at wavelengths

greater than about 30 km in the 10S and 20S ensembles

and 50km in the 30S ensemble. On the other hand, in the

L ensembles, the large-scale initial errors at 90 km have

interacted with neighboring scales to produce a rela-

tively flat spectrum for all wavelengths above 10km.

Notably, in the L ensembles, the 1-h KE0 increases

greatly with increasing environmental wind shear, while

in the S ensembles, the 1-h KE0 generally decreases with
increasing shear, except for the longest wavelengths in

the 30S ensemble. At later times, the KE0 in all ensem-

bles propagates primarily up-amplitude and secondarily

upscale (Mapes et al. 2008; Durran et al. 2013; DW16).

By 3h, the KE0 spectra have filled the same scales and

are similar in amplitude between S and L ensembles,

while at 5 h, there is virtually no difference in KE0 or KE

between S and L ensemble pairs. The KE0 spectra are

very close to the KE spectra in all ensembles for wave-

lengths of less than about 30 km, then flatten out at

larger scales,8 indicating that predictability has been lost

at wavelengths less than roughly 30 km.

To quantify this loss of predictability, we define the

error saturation as the ratio of perturbation to total kinetic

energy, KE0/KE, expressed as a percent. At a given scale,

error saturation values near 100% indicate that there is no

predictability, since the ensemble errors are as large as

the ensemble mean. We choose a somewhat arbitrary

threshold of 80% error saturation to indicate a significant

loss of predictability, although, as noted by Potvin et al.

(2017), even 100% error saturation need not imply a

complete loss of subjective measures of forecast skill.

Figure 7 shows spectra of error saturation at times of 1, 3,

and 5h in the S and L ensembles for each value of vertical

wind shear.At 1h, only the shortest wavelengths show any

significant saturation in all six ensembles. By 3h, wave-

lengths up to 10km are about 80% saturated in the ‘‘10’’

ensembles, but the range of saturated wavelengths is less

in the ‘‘20’’ ensembles and less still in the ‘‘30’’ ensembles.

At a given wavelength, the values of KE0/KE in the 10L

ensemble are less than those in the 10S ensemble at both 1

and 3h. In the 20L ensemble, the error saturation is

greater than that of the 20S ensemble at 1h, but less at 3h,

and the values of KE0/KE in the 30L ensemble are greater

than those in the 30S ensemble at both 1 and 3h. In

summary, while numerical artifacts may muddle the

FIG. 5. Normalized domain-averaged density-weighted KE as

a function of time for the 10L (cyan), the 20L (yellow), and the 30L

ensembles (magenta) plotted every 30min.

7Waite (2016) found that the slopes of KE spectra in model

simulations are sensitive to the model vertical resolution when

Dz $ 500m. Sensitivity tests of 20L simulations with a vertical

resolution of 200m gave very similar spectra to those shown here.

8While the analysis presented here follows that of Lorenz

(1969), a better measure of ensemble error in a realistic ensemble

simulation is the mean difference from a control member, or

‘‘truth’’ state, instead of the ensemble mean. In this case, the errors

saturate when KE0 5 2KE. Sensitivity tests where the errors about

an unperturbed control run were used instead of the KE0 described
here showed no qualitative difference in the analysis of error

growth presented here.
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behaviors of errors at very small scales, Fig. 7 indicates

that increased environmental shear produces relatively

less error saturation from small-scale errors than from

large-scale errors in the earlier stages of the simulations.

Nevertheless, by 5h, the error saturation curves are nearly

identical across all ensemble pairs. While difficult to de-

termine from Fig. 7 because of the linear vertical axis,

error saturation at scales larger than 200 km is about

2–5 times larger in the ‘‘20’’ ensembles than in the ‘‘30’’

ensembles (not shown). This supports the observation

that the large-scale structure of the MCSs in the ‘‘20’’

ensembles (Fig. 3) shows greater variability among indi-

vidual members than that in the ‘‘30’’ ensembles (Fig. 4).

The evolution of the error saturation for the specific

wavelength range of 15–25 km is shown in Fig. 8. We

choose this range of wavelengths because they are the

largest waves that reach 80% saturation by 5h in all

ensembles (Fig. 7). The errors clearly saturate fastest in

the ‘‘10’’ ensembles and slowest in the ‘‘30’’ ensembles.

Additionally, the simulations with initial small-scale

errors (dotted lines) in the ‘‘10’’ and ‘‘20’’ ensembles

saturate faster than those with initial large-scale errors,

while the simulations with initial large-scale errors

(dashed lines) in the ‘‘30’’ ensembles saturate faster than

those with initial small-scale errors, consistent with the

conclusions from Fig. 7. Nevertheless, between 4.5 and

5h, each of the ensemble pairs develops the same

amount of error saturation, or loss of predictability.

Early evolution of errors in a developed flow

Aswe noted earlier, errors (KE0) grow up-amplitude in

time [see also DW16 and Potvin et al. (2017)]. We also

describe in the introduction the mechanism by which

large- and small-scale initial errors produce nearly iden-

tical patterns of upscale error growth in the Lorenz

model. Is this behavior observable in the present simu-

lations of MCSs? The notion of a rapid downscale prop-

agation and subsequent saturation of errors on small

scales is difficult to assess in the simulations presented

above because the convection must produce the back-

ground (total) KE spectrum at the same time the errors

are building. To better separate the amplitudes of the KE

FIG. 6. Total (solid lines) and perturbation (dashed lines)KE spectral densities averaged over heights of 10–12 km for (a) the 10S, (b) the

20S, (c) the 30S, (d) the 10L, (e) the 20L, and (f) the 30L ensembles at 1 (blue), 3 (red), and 5 h (green) into the simulations. Also plotted in

each panel is a reference k25/3 spectrum whose amplitude corresponds to that observed by Nastrom and Gage (1985). The gray shading

indicates wavelengths smaller than numerical dissipation scales (see text).
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and initial KE0 spectra, two additional ensembles with

20ms21 of wind shear were run in which the moisture

perturbations were introduced at 1h into the simulations

when the background KE spectrum is already well de-

veloped and growing more slowly (recall Fig. 6). These

ensembles are denoted ‘‘20S1’’ and ‘‘20L1’’ for small-

scale and large-scale perturbations, respectively.

Figure 9 shows the KE0 spectra from the 20S1 and

20L1 ensembles, vertically averaged over 0# z# 16 km,

at times 3, 6, and 12min after the first errors were in-

troduced. Also plotted is the average background KE

over the same time period. The most noticeable features

of the KE0 spectra are the peaks at 5.7 and 90km where

the moisture (but no velocity or temperature) pertur-

bations were introduced in the 20S1 and 20L1 ensem-

bles, respectively. At 1 h 3min, KE0 is larger in the 20S1

ensemble than in the 20L1 ensemble at scales less than

10km, while at scales larger than 10km, the 20L1 errors

have filled the spectrum more than the 20S1 errors.

Nevertheless, the large-scale errors in the 20L1 ensem-

ble propagate to even the smallest scales within just

3min. The small-scale errors grow sufficiently rapidly in

the 20L1 ensemble that, within 12min, the 20L1 KE0 is
actually somewhat larger than the 20S1 KE0 at almost all

scales. Although the initial errors spread rapidly across

scales, their early growth does not follow a strict upscale

or downscale cascade. Instead, in both ensembles, scale

interactions tend to flatten the KE0 spectra rather

quickly and produce simultaneous up-amplitude growth

at all scales.

5. Sensitivity to perturbation strength

The 0.1 g kg21 amplitude for the initial moisture per-

turbations was chosen somewhat arbitrarily. In the

highly nonlinear flow generated by mesoscale convec-

tive systems, it is not obvious how the predictability lead

time will respond to changes in the perturbation am-

plitude. To investigate this, we introduce two new pairs

of S and L ensembles with the 20ms21 wind shear

profile and perturbation amplitudes reduced by factors

of 5 (a5 0.02 g21) and 25 (a5 0.04 g21) compared to the

original amplitude. We will denote these ensembles by

appending ‘‘/5’’ or ‘‘/25’’ such that the ensemble with

initial amplitude a/25 and perturbation scaleL5 8 km is

named 20S/25.

FIG. 7. Error saturation (the ratio of perturbation to total kinetic energy: KE0/KE; %) averaged over heights of 10–12 km for the

(a) ‘‘10,’’ (b) ‘‘20,’’ and (c) ‘‘30’’ ensembles at 1 (blue), 3 (red), and 5 h (green) into the simulations. The S (L) ensembles are represented by

dotted (dashed) lines. For ease of interpretation, the horizontal axis is wavelength. The gray shading is as in Fig. 6.

FIG. 8. Error saturation (KE0/KE; %) averaged over heights of

10–12 km, summed over horizontal wavelengths of 15–25 km, for

the 10S (dotted cyan), 10L (dashed cyan), 20S (dotted yellow), 20L

(dashed yellow), 30S (dotted magenta), and 30L (dashed magenta)

ensembles.
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Figure 10 shows spectra of the error saturationKE0/KE

similar to those in Fig. 7, but with varying a instead of

varying amounts of vertical wind shear. Curves for 1, 3,

and 5h are plotted in each panel. The error saturation

values at 1-h decrease dramatically as a decreases, be-

coming essentially negligible on a linear scale in the ‘‘/5’’

and ‘‘/25’’ ensembles. At 3 h, scales of 10 km are about

60% saturated in the original ‘‘20’’ ensembles, but are

only about 30% and 20% saturated for the ‘‘/5’’ and

‘‘/25’’ ensembles, respectively. By 5h, scales of 20 km are

about 85% saturated in both ‘‘20’’ ensembles, 75% sat-

urated in both ‘‘/5’’ ensembles, and 70% saturated in

both ‘‘/25’’ ensembles. Although it takes somewhat

longer for the ‘‘/5’’ and ‘‘/25’’ ensembles to achieve 80%

error saturation, and thereby the same loss of pre-

dictability, as for the original ‘‘20’’ ensembles, the in-

crease in predictability diminishes as the initial errors

are made smaller. Moreover, for all three initial ampli-

tudes, the predictability at 5 h is the same for both small-

and large-scale initial errors.

An alternate illustration of this time dependence is

provided in Fig. 11, where the average error saturation

spectrum for all 40members of the ‘‘20,’’ ‘‘/5,’’ and ‘‘/25’’

ensembles is plotted at different times, chosen to most

closely match the 6-h error saturation spectrum of the

‘‘/25’’ ensembles. The ‘‘20,’’ ‘‘/5,’’ and ‘‘/25’’ ensembles

have similar error saturation spectra at 290, 340, and

360min, respectively. Thus, the first reduction of the

FIG. 9. Perturbation kinetic energy (KE0; thin solid lines) at 3, 6, and 12min after the introduction of errors at 1h in the

(a) 20S1and (b) 20L1ensembles, vertically averagedbetween0 and16km.The thickblack line shows the totalKEaveraged

over the same period (from 1h 3min to 1h 12min). The gray shading and gray k25/3 reference line are as in Fig. 6.

FIG. 10. Error saturation (KE0/KE; %) averaged over heights of 10–12 km for the ‘‘20’’ ensembles with (a) the full initial-amplitude

perturbations, and with those perturbations reduced by a factor of (b) 1/5 and (c) 1/25. Data are plotted at times 1 (blue), 3 (red), and 5 h

(green) into the simulations. The S (L) ensembles are represented by dotted (dashed) lines. The gray shading is as in Fig. 6.
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perturbation amplitude by a factor of 5 resulted in an

extra 50min of predictability lead time, or the simula-

tion time required to attain a particular spectrum of

error saturation, while a further reduction of the per-

turbation amplitude by another factor of 5 resulted in

only 20min of additional predictability lead time.

The sensitivity of predictability lead time to initial-

error amplitude in these simulations agrees with that in

the highly idealized model of Lorenz (1969). When the

background KE spectrum has a k25/3 slope, the Lorenz

model predicts initially unsaturated errors will propa-

gate rapidly downscale (Lorenz 1969; Rotunno and

Snyder 2008), and if the amplitude of the initial error is

decreased, as in Lorenz’s experiment C, the scale that

first saturates though downscale propagation becomes

smaller. Because the eddy turnover time decreases

with decreasing length scale (Lorenz 1969; Rotunno

and Snyder 2008), the subsequent upscale error prop-

agation proceeds more rapidly at smaller scales, lead-

ing to diminishing gains in the predictability lead time

with decreasing initial-error amplitude. Nevertheless,

although the predictability lead time in our simulations

is determined by the absolute amplitude of the initial

errors, independent of their horizontal scale, the errors

in our simulations do not evolve through a cascade in

which they are primarily transferred between adjacent

scales; instead, the errors tend to increase simultaneously

at all scales (up-amplitude growth) while spreading rap-

idly across all scales.

6. Decomposition into divergent and rotational
components

Toprovide insight into themechanics of theKE spectra

generated by the simulated storms, we decompose the

horizontal wind fields and KE into divergent and rota-

tional parts as inWaite and Snyder (2013). Using spectral

derivatives of Fourier-transformed velocities (fromwhich

themean flowhas been subtracted), for themth ensemble

member, the vorticity is ẑm(kx, ky)5 ikxŷm 2 ikyûm and

the divergence is d̂m(kx, ky)5 ikxûm 1 ikyŷm. The di-

vergent kinetic energy (DKE) spectrum is then given by

bDKE
m
(k)5

1

2

d̂
m
(k)d̂

m
*(k)

k2
h

,

and the rotational kinetic energy (RKE) spectrum is

computed from

bRKE
m
(k)5

1

2

ẑ
m
(k)ẑ

m
*(k)

k2
h

.

Because there is no Coriolis force in the simulations,

there is no large-scale balanced rotational flow, andboth the

divergent and rotational wind components develop as a

result of the convection. Vertical profiles of ensemble-mean

wavenumber-integrated totalKE,DKE, andRKEat 5h for

each L ensemble9 are shown in Figs. 12 and 13. To com-

pensate for the differences in the horizontal extent of the

MCSs that develop in different environments, these profiles

have been normalized by the number of horizontal points in

the domain with ensemble-mean KE greater than 1m2s22.

We first consider KE summed over all horizontal

wavelengths longer than 32km, for which several

prominent features appear in the profiles in Fig. 12.

First, there is a pronounced maximum in KE at the

thunderstorm-anvil-outflow level (10–12km) dominated

by the divergent component. Second, there is a sec-

ondary maximum just above the surface as a result of

the dynamics of the surface cold pool spreading, also

dominated by the divergent component, that is, how-

ever, nearly absent in the 30L ensemble. Third, there are

alternating levels between the surface and the tropo-

pause (12 km) where the DKE is larger than the RKE

and vice versa; these are discussed further below. Fi-

nally, the RKE, for scales larger than 32 km, becomes

increasingly large at all levels as the environmental wind

FIG. 11. Error saturation (KE0/KE; %) averaged over heights of

10–12 km for the ‘‘20’’ ensembles at 290min (blue), the ‘‘/5’’ en-

sembles at 340min (red), and the ‘‘/25’’ ensembles at 360min

(green). All 40 members in the ensemble pairs were averaged for

clarity. The times were chosen to most closely match the 360-min

spectrum in the ‘‘/25’’ ensembles.

9 As suggested by Fig. 6, the differences between the L and S

ensembles at 5 h are negligible.
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shear increases: the stronger storms under higher shear

produce more vertical vorticity, as localized updrafts tilt

environmental vorticity into the vertical. Note also that

the maximum in the vertical distribution of KE in the

30L ensemble bears some resemblance to the KE dis-

tribution in the single supercell simulation in an envi-

ronment with 40ms21 shear in Lilly et al. (1998, their

Fig. 8a), except that the KE below the anvil-outflow

level in the supercell simulation was almost negligible.

Figure 13 again shows vertical profiles of KE, DKE,

and RKE, but for disturbances with wavelengths shorter

than 32km. At these shorter wavelengths, there is much

less total KE, as expected from the slope of the back-

ground KE spectrum. In contrast to the long-wavelength

velocities shown in Fig. 12, at scales less than 32km, the

RKE is comparable to the DKE in the 10L ensemble and

larger in the 20L and 30L ensembles, except at the surface

and in the stratosphere above the anvil-outflow level. This

is evidence of the important contribution to the RKE of

the vortices produced by individual convective cells,

which strengthen with increasing wind shear. The DKE,

on the other hand, shows little variation in either mag-

nitude or vertical structure with increasing wind shear.

Vertical levels and layers of particular interest are

highlighted by gray in Figs. 12 and 13: these are within the

gust front (z5 0.5km), the rear-inflow jet (z5 3km), the

anvil-outflow layer (10 # z # 12km), and the lower

stratosphere (14 # z # 16km). At the height of z 5
0.5km above the surface, there is a maximum in large-

scale divergent winds as a result of cold pool spreading

under the convection. This is illustrated in Fig. 14, which

shows the large-scale (.32km) divergence and rotational

winds at this height at 5h for the member from the 10L,

20L, and 30L ensembles shown in Figs. 2d, 3d, and 4d,

respectively. There is also a rotational signature of book-

end vortices and rear-to-front flow into the squall line,

which is a typical feature of such systems (e.g., Weisman

and Trapp 2003; Trapp and Weisman 2003). Figure 15

shows the 5-h spectra of KE, DKE, and RKE for each L

ensemble at z 5 0.5 km. These spectra show that the

DKE is about 2–3 times larger than the RKE in the 10L

and 20L ensembles over wavelengths between 7Dx and

about 100km. In contrast, the DKE and RKE are com-

parable in the 30L ensemble, except for wavelengths

shorter than about 20km, where the DKE is larger. In all

cases, the DKE and RKE both follow an approximate

k25/3 spectrum over wavelengths of 7Dx to about 100km.

At z5 3km, the DKE exceeds the RKE at scales larger

than about 15, 30, and 70km in the 10L, 20L, and 30L en-

sembles, respectively (Fig. 16). Interestingly, the DKE

FIG. 12. Vertical profiles of horizontal KE of the total wind field (solid black lines), divergent wind field (dotted–dashed blue lines), and

rotational wind field (dashed red lines) for (a) the 10L, (b) the 20L, and (c) the 30L ensembles at 5 h. KEL represents the sum of KE over

wavenumbers larger than 32 km. The values of KE have been normalized by the average number of horizontal grid points at the anvil level

(10–12 km) where KE of the ensemble-mean winds minus the background vertical wind profile is greater than 1m2 s22. The gray shaded

areas correspond to the vertical intervals from which data are collected for Figs. 14–20.
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follows ak25/3 spectrumacross the resolved scales, while the

slope of the RKE is steeper at very small scales and flattens

out at large scales. Consistent with the vertical profiles

plotted in Figs. 12 and 13, the RKE is strongest in the 30L

ensemble, which has the highest vertical wind shear.

At the anvil-outflow level, the total KE is at its maxi-

mum. Strong upper-level divergence occurs on a scale

larger than the MCS itself, as shown by the horizontal di-

vergent winds at a height of 11km in Figs. 17a–c. The ro-

tational wind field at this same level exhibits a pronounced

mesoscale front-to-rear rotational flow through theMCSs,

with two main counterrotating vortices (Figs. 17d–f). The

KE spectra averaged over 10 # z # 12km, plotted in

Fig. 18, show the DKE exceeds the RKE at sufficiently

long wavelengths in all ensembles, accounting for the

dominance of DKE over RKE apparent in Fig. 12 in the

anvil-outflow layer. In contrast to the RKE, the slope of

theDKEapproximates a k25/3 spectrumat all wavelengths

not significantly impacted by numerical dissipation.

In the stratosphere, the horizontal velocities and the

KE values are much smaller than those at the anvil-

outflow level. At 14km, the divergent winds exhibit clear

features of gravity waves, particularly in the pronounced

circular symmetry in the 10L simulation (Fig. 19a). The

stratospheric KE, averaged between heights of 14 and

16km, is largely dominated by the DKE of these gravity

waves, which is over an order of magnitude stronger than

the RKE at all scales in the 10L and 20L ensembles and

about 2–3 times larger in the 30L ensemble (Fig. 20).

Our 20m s21 shear cases are similar to the simula-

tions conducted in Sun et al. (2017), and the slopes of

their DKE and RKE spectra averaged over 0–15 km

and 4–6 h (see their Fig. 6), are similar to those of the

spectra from our 20L simulation averaged over the

same times and vertical levels and vertically weighted

by density (Fig. 21). But in contrast to our results, in

Sun et al. (2017) the RKE exceeds the DKE for all

wavelengths shorter than 180 km, and for a broad range

of those wavelengths the difference is roughly a factor

of 2. As shown in Fig. 21, we find the DKE and RKE

have very similar magnitudes for all well-resolved

wavelengths shorter than 40 km and that the DKE ex-

ceeds the RKE on all scales greater than 40 km. The

biggest difference between our simulations and those in

Sun et al. (2017) appears to be their use of seven warm

bubbles with perturbation temperatures of 3K to trig-

ger the initial convection instead of our three warm

bubbles with 2-K temperature perturbations, although

it is not obvious how this difference should affect the

relative strength of the RKE and DKE spectra.

Unlike the real atmosphere, there is no source of KE

at large scales in our simulations, in which the back-

ground environment is horizontally homogeneous, our

512 km 3 512 km domain is relatively small, and

Coriolis forces are neglected. As a consequence, the

spectral power in the longest wavelengths is not enhanced

by downscale energy propagation from the synoptic

scales. Nevertheless, several characteristics of our

FIG. 13. As in Fig. 12, but KES represents the sum of KE over wavenumbers less than or equal to 32 km.
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spectra are similar to those at the smallest scales captured

in global models (Burgess et al. 2013; Skamarock

et al. 2014) or in channel models of baroclinically

unstable waves (Waite and Snyder 2013). Among

these, the convection-permitting MPAS simula-

tions on a global quasi-uniform hexagonal mesh with

3-km cell spacing (Skamarock et al. 2014) appear to

offer the best opportunity for comparison with our

FIG. 15. Total KE spectra at a height of 500m for (a) the 10L, (b) the 20L, and (c) the 30L ensembles, for the total wind field (black),

divergent wind field (blue), and rotational wind field (red) at 5 h into the simulations. The lines for the divergent and rotational spectra are

shifted down by a factor of 10 for better visibility. Other details as in Fig. 6.

FIG. 14. (a)–(c) Horizontal divergence (colors) and divergent wind vectors for a selected member of the (left) 10L, (center) 20L, and

(right) 30L ensembles at 5 h and a height of 0.5 km. (d)–(f) Rotational wind speed (colors) and rotational wind vectors for the same

members, time, and height. All fields have been filtered to remove wavelengths shorter than 32 km. The member selected from the 10L,

20L, and 30L ensembles corresponds to Figs. 2d, 3d, and 4d, respectively.

2204 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 74



finer-scale MCS simulations. In both MPAS and our

simulations, the DKE and RKE have similar magni-

tudes over a range of the smallest resolved scales in

the troposphere, while DKE dominates RKE in the

stratosphere.

In our simulations, the DKE spectrum more closely

follows a k25/3, or slightly shallower, slope than does the

RKE (Figs. 15, 16, 18, 20), as has also been noted in

coarser-resolution simulations with parameterized con-

vection (Burgess et al. 2013). Some of the convergence

and divergence in our simulations is associated with the

convective-system-scale low-level inflow and anvil-level

outflow, as evident in Fig. 12, but small-scale gravity

waves are likely responsible for the nearly uniform

FIG. 16. As in Fig. 15, but at a height of 3 km.

FIG. 17. As in Fig. 14, but at a height of 11 km.
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vertical distribution of DKE at wavelengths shorter than

32 km (Fig. 13).

7. Discussion

We showed in section 3 that the predictability lead

time of mesoscale convective systems does not depend

on the horizontal scale of equal-amplitude initial errors.

In the mesoscale, where the background KE follows a

k25/3 spectrum, this suggests that small relative errors in

initial conditions on the largest mesoscales should have

impacts similar to larger relative errors on smaller

scales. Durran andGingrich (2014) compare the relative

errors corresponding to equal-amplitude errors in the

FIG. 18. As in Fig. 15, but averaged over heights of 10–12 km (the anvil level). The total KE lines are the same as the 5-h total

KE lines in Figs. 6d–f.

FIG. 19. As in Fig. 14, but at a height of 14 km.
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velocity field at specific pairs of wavelengths; in the

following, we generalize this discussion to relative errors

in spectral bands, which are more directly relevant to

problems like the formulation of data assimilation

strategies. The total KE along a line of length S and the

integrated KE spectrum along the same line are con-

nected by Parseval’s theorem, which states10ð
S

u2(x) dx5

ð‘
2‘

û(k)û*(k) dk .

Let us denote the contribution to the totalKE in the spatial

domain from wavenumbers in the interval [k1, k2] as

E(k
1
, k

2
)5

1

2

ðk2
k1

[û(k)û*(k)1 ŷ(k)ŷ*(k)] dk . (3)

Suppose the KE follows a k25/3 spectrum; then, for some

constant a,

û(k)û*(k)1 ŷ(k)ŷ*(k)5ak25/3 . (4)

Let lj be the wavelength corresponding to wavenumber

kj; using (3) and (4), the ratio of the KE in wavenumber

band [k1, k2] to that in band [k3, k4] is

E(k
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2
)

E(k
3
, k
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3 2 l2/3

4

. (5)

From (5), the ratio of the KE in the 2–4-km band to

that in the 200–400-kmband (both factor-of-2 changes in

wavelength) is 0.0464, implying that the ratio of the

background velocities in these bands is 0.215. Thus,

the characteristic atmospheric horizontal velocities over

the wavelength range of 2–4km are 21.5% as large as

those in the range of 200–400 km, and a 100% error in

the 2–4-km band would have the same amplitude (and

roughly the same negative impact on predictability) as a

21.5% error in the 200–400-km band. This analysis at-

taches more significance to small-scale errors than the

analysis in Durran and Gingrich (2014) but still implies

FIG. 20. As in Fig. 15, but averaged over heights of 14–16 km.

FIG. 21. Density-weighted kinetic energy spectra averaged over

0 # z # 15 km and times 4–6 h for the 20L ensemble: total wind

field (black), divergent wind field (blue), and rotational wind field

(red). The lines for the divergent and rotational spectra are shifted

down by a factor of 10 for better visibility. Other details as in Fig. 6.

10 For simplicity, we give formulas for a one-dimensional do-

main, but the argument for two-dimensional spectra such as those

used in (2) is virtually identical.
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that relative errors at the largest mesoscale wavelengths

must be small before one can expect to gain pre-

dictability at lead times of roughly 5 h by incorporating

finescale data from sources like radar. If we consider

very small-scale disturbances due to butterflies per-

turbing the atmosphere at wavelengths between 5 and

10 cm, 100% errors on the butterfly scale would corre-

spond to 0.63% errors on the 200–400-km scale. Al-

though this value is larger than obtained by simply

comparing relative errors at wavelengths of 400km and

10 cm (Durran and Gingrich 2014), the spectral band

analysis continues to imply that butterflies would not be

of practical importance in actual weather forecasts.

8. Conclusions

Ensemble simulations of mesoscale convective sys-

tems forced by three environmental wind profiles have

been presented to analyze the relative importance of

small- and large-scale initial errors on mesoscale pre-

dictability. All of the simulations show that, at lead times

of 5 h, there is no significant difference in the loss of

predictability between ensembles initialized with equal-

amplitude absolute errors at wavelengths of 5.7 and

90 km, despite the differences in the evolution of the

MCSs under different environmental wind shear. The

initial perturbations in our control ensembles were

produced by a 0.1 gkg21 amplitude monochromatic

square wave of random phase in the surface and near-

surface moisture field. The intrinsic predictability of our

idealized convective systems was examined by reducing

the initial amplitude of these perturbations by factors of

1/5 and 1/25, respectively. Similar error-saturation

spectra are produced at forecast lead times of 290, 340,

and 360min as the amplitude of the moisture pertur-

bations are successively reduced from 0.1 to 0.02 to

0.004 g kg21, suggesting a limit of intrinsic predictability

at 20-km horizontal scales of a bit more than 6h. Despite

the idealized nature of these simulations, this pre-

dictability lead time is roughly consistent with National

Atmospheric and Oceanic Administration (NOAA)

Hazardous Weather Testbed (HWT) Spring Fore-

casting Experiment assessments of the practical impact

of finescale radar data assimilation on thunderstorm

forecasts (Kain et al. 2010; Stratman et al. 2013; Surcel

et al. 2015). Nevertheless, as suggested by the range of

MCS structures in Figs. 2–4 and determined quantita-

tively by the error saturation, the large-scale structure of

MCSs in 30ms21 may yet be more predictable than

those in less sheared environments.

In the series of ensemble simulations with different

initial perturbation amplitudes, as well as the series

with different environmental wind shears, the error

saturation at 5 h remained insensitive to the horizontal

scale of the initial error. The idealized spectral turbu-

lence model of Lorenz is also insensitive to the scale of

equal-amplitude initial errors because large-scale errors

rapidly propagate downscale where they saturate and

then grow through an upscale cascade as if those errors

had simply been present in the small scale to begin with

(Lorenz 1969; Durran and Gingrich 2014). The initial

errors in our ensembles rapidly spread across all scales,

both downscale and upscale, but the subsequent error

growth is ‘‘up amplitude,’’ rather than through a cascade

from the smallest scales. Similar patterns of spectral

error growth have been observed in several previous

studies (Mapes et al. 2008; Durran et al. 2013; Durran

and Gingrich 2014), including simulations of deep con-

vection (DW16; Potvin et al. 2017).

Our result that equal-amplitude errors introduce

similar losses in predictability independent of scale dif-

fers slightly from that of DW16, who found that low-

level potential temperature perturbations in a square

wave form withL5 8 km produced similar error growth

to perturbations with L 5 128km and one-fourth the

initial amplitude. Our current results differ from DW16

because we perturb the moisture field instead of the

potential temperature field, we use a different environ-

mental sounding, and we include simple boundary layer

friction. The relative rates of error growth due to initial

perturbations in various dynamical fields, particularly at

different horizontal scales, warrant further study.

As in DW16, the MCSs produced in all simulations

generate a background k25/3 KE spectrum, consistent

with observations of the atmosphere at similar hori-

zontal wavelengths (Nastrom and Gage 1985; Lindborg

1999; Cho and Lindborg 2001) and those generated by

numerous model studies (e.g., Hamilton et al. 2008;

Waite and Snyder 2013; Burgess et al. 2013; Skamarock

et al. 2014; Sun et al. 2017). The absolute magnitudes of

the KE spectra in the 10 and 20ms21 shear cases happen

to be very close to the average values observed between

the heights of 9 and 14km by Nastrom and Gage (1985)

(Figs. 18a,b), although our values would decrease if

otherwise identical simulations were conducted in larger

domains [see (2)].

In our simulations, the disturbance ultimately re-

sponsible for creating the k25/3 KE spectrum is clearly

deep convection. This is consistent with the general

hypothesis of Lilly (1983) that energy injected at small

scales by convection is responsible for the k25/3 KE

spectrum observed at mesoscale wavelengths, although

the analysis by Sun et al. (2017) suggests the detailed

dynamical processes differ from the 2D inverse cascade

envisioned by Lilly. Instead, Sun et al. (2017) found that

the spectrum develops as a result of 1) the buoyant
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production of KE over a range of scales with a peak at

short wavelengths, 2) a vertical redistribution of this

buoyancy-generated KE, and 3) a filling out of the

spectrum by nonlinear interactions. Given the similarity

of the Sun et al. (2017) simulations to our 20m s21 shear

case, and the similarities among theKE spectra from our

simulations in different environmental shears, it is likely

that the same processes are acting in our simulations.

The vertical distribution of the KE shows a pro-

nounced maximum at anvil-outflow level, which, in the

10 and 20m s21 shear cases, is strongly dominated by the

divergent component of the wind (DKE) on scales

similar to or larger than the MCS itself. In agreement

with convection-permitting global MPAS simulations

(Skamarock et al. 2014), at shorter wavelengths DKE

and RKE have similar magnitudes in the upper tropo-

sphere, while DKE dominates RKE in the stratosphere.

In the 30m s21 shear case, the magnitude of the RKE is

enhanced relative to the DKE by the stronger shear,

likely because of stronger tilting of environmental hor-

izontal vorticity into the vertical by the convective up-

drafts. In all our ensembles, the DKE spectrum more

closely follows a k25/3, or slightly shallower, slope than

does the RKE, as has also been noted in coarser-

resolution simulations with parameterized convection

(Burgess et al. 2013). At wavelengths shorter than

32km, the DKE exhibits a nearly uniform distribution

with height, suggesting that vertical transport by gravity

waves may play a role in homogenizing this component

of the KE spectrum.

The universality of our results across all ensembles,

with differences only in a few details, suggests that me-

soscale structures with horizontal scales between 100

and 400 km exert a significant control on deep convec-

tive systems. Similarly, Potvin et al. (2017) found that

forecasts of supercells were relatively insensitive to the

inclusion of initial conditions at fine scales less than

16km. Nevertheless, many other factors important in

real-world weather forecasts are neglected in our ide-

alized model, including the incorporation of realistic

synoptic-scale forcing, a detailed representation of

boundary layer processes, the Coriolis force, topogra-

phy, and radiative effects. To address these limitations,

further studies of the predictability in real-world simu-

lations using the Weather Research and Forecasting

(WRF) Model initialized prior to actual severe weather

events are being conducted by the authors.
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