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ABSTRACT

Idealized ensemble simulations of mesoscale convective systems (MCSs) with horizontal grid spacings of 1, 1.4,

and 2 km are used to analyze the influence of numerical resolution on the rate of growth of ensemble spread in

convection-resolving numerical models. The ensembles are initialized with random phases of 91-km-wavelength

moisture perturbations that are captured with essentially identical accuracy at all resolutions. The rate of growth

of ensemble variance is shown to systematically increase at higher resolution. The largest horizontal wavelength at

which the perturbation kinetic energy (KE0) grows to at least 50% of the background kinetic energy spectrum is

also shown to grow more rapidly at higher resolution. The mechanism by which the presence of smaller scales

accelerates the upscale growth of KE0 is clear-cut in the smooth-saturation Lorenz–Rotunno–Snyder (ssLRS)

model of homogeneous surface quasigeostrophic turbulence. Comparing the growth of KE0 from the MCS

ensemble simulations to that in the ssLRS model suggests interactions between perturbations at small scales,

where KE0 is not yet completely saturated, and somewhat larger scales, where KE0 is clearly unsaturated, are

responsible for the faster growth rate of ensemble variance at finer resolution. These results provide some em-

pirical justification for the use of deep-convection-related stochastic parameterization schemes to reduce the

problem of underdispersion in coarser-resolution ensemble prediction systems.

1. Introduction

Ensemble forecasting provides a way of accounting

for the inherent uncertainty in numerical weather fore-

casts. One major source of such uncertainty arises from

the inaccurate specification of initial conditions, and one

of the most important ways of forming an ensemble is

to generate a set of numerical simulations by starting

from a set of plausible, but slightly different, initial

conditions. As the forecasts from such initial-condition

ensembles proceed, the ensemble typically becomes

underdispersive in the sense that the spread among

the ensemblemembers becomes too small to ensure that

the verifying weather pattern is contained within the

ensemble (e.g., Buizza et al. 2005; Raftery et al. 2005;

Schwartz et al. 2014).

Several empirical methods have been proposed to

increase ensemble spread and thereby reduce the

problem of underdispersion, including stochastically

perturbed parameterization tendencies (SPPT; Buizza

et al. 1999) and stochastic kinetic energy backscat-

ter (SKEB; Shutts 2005). At the European Centre for

Medium-Range Weather Forecasts (ECMWF), SKEB

is implemented in a configuration designed to account

for unresolved deep convection in a manner conceptu-

ally similar to another alternative for increasing en-

semble spread, the stochastic convective backscatter

(SCB) algorithm (Shutts 2015). It has been supposed

that if the spatial resolution is increased to the point

where interactions between the convection and larger

scales can be explicitly resolved, the need for parame-

terizations such as the ECMWF-type SKEB and SCB

should be reduced (Leutbecher et al. 2017).

The assumption that SCB and ECMWF-type SKEB

become less important at higher resolution is supported by

previous studies following the evolution of pairs of simu-

lations with nearly identical initial conditions and showing

that the difference between the twins (the error) increases

faster infine-resolution convection-permitting simulations

than in coarser-resolution simulations using convective

parameterizations. Zhang et al. (2003) found more rapid

error growth in convection-permitting 3.3-km-resolution

simulations than in 30-km simulations with parameterized

convection. Hohenegger and Schär (2007) found an order

of magnitude difference in the doubling time of global

errors between synoptic-scale (80-km resolution) andCorresponding author: Jonathan A. Weyn, jweyn@uw.edu
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cloud-resolving (2.2-km resolution) models. Moving be-

yond pairs of near-twin experiments, similar results were

obtained for larger ensembles by Clark et al. (2009, 2010),

who showed that ensemble spreadgrows faster at convection-

allowing 4-km resolution than at 20-km resolution with

convective parameterization.

Deep convection is a highly nonlinear phenomenon

with rapid error growth rates and short eddy turnover

times. Consistent with these previous results, models

with sufficient resolution to at least approximately in-

clude convective dynamics might naturally be expected

to generate more rapid growth of ensemble spread than

coarser-resolution models that rely on convective pa-

rameterizations. But how does the ensemble spread

compare when all model simulations use a horizontal

grid spacing sufficient to capture the basic dynamics

of deep convection? Generalizing from the seminal

idealized-model analysis of Lorenz (1969), differences

between ensemble members are expected to grow

most rapidly at the smallest scales. In particular, in ho-

mogeneous isotropic turbulence, dimensional analysis

suggests that the kinetic energy of the perturbations

about the ensemble mean (KE0) will grow at eddy

turnover time scales that decrease as the wavelength of

the perturbations decreases, provided the slope of the

background kinetic energy (KE) spectrum is shallower

than k23, where k is the wavenumber (Lorenz 1969; Lilly

1972; Palmer et al. 2014). Although deep convection is

not homogeneous isotropic turbulence, the atmo-

spheric kinetic energy spectrum has a k25/3 slope at

the wavelengths characteristic of deep convection, and

previous ensemble simulations of deep convection

have verified expectations that the KE0 spectrum grows

fastest at the smallest scales (Weyn and Durran 2017,

hereafter WD17).

Nevertheless, the overall effect of numerical resolu-

tion on upscale KE0 growth is not immediately obvious.

Suppose convection is being forecast withmodels having

horizontal grid spacings of either 1 or 2 km and that,

owing to the limitations of the data-assimilation pro-

cedure, the initial KE0 spectrum for both ensembles

is saturated at all scales shorter than 8km but is very

small at all larger scales. Will the different spatial reso-

lutions make a difference in the time required for KE0

at 16 km to become saturated in each ensemble? To

the extent that KE0 grows to larger scales through a

cascade involving just a few slightly shorter wavelengths,

the smallest-scale contributions to KE0 in the higher-

resolution model may not be of practical importance, and

there may be little difference between the ensembles

in the upscale growth of KE0.
To better illustrate the issue in the preceding question,

Fig. 1 shows the evolution of the KE0 spectra in a close

relative of Lorenz’s original 1969 turbulence model,

the smooth-saturation Lorenz–Rotunno–Snyder (ssLRS)

model (Durran and Gingrich 2014), configured for sur-

face quasigeostrophic dynamics (Rotunno and Snyder

2008).1 The initial error is localized at the smallest

retained wavelength of approximately 1km (dashed blue

curve), and the classic upscale cascade of initial errors is

clearly apparent, with the most rapidly growing errors at

any time having maximum amplitude at scales just

slightly larger than those that are saturated. Now suppose

that the initial KE0 spectrum is given instead by the

dashed orange curve in Fig. 1 (which is the level to which

errors would grow in 6h if the initial KE0 distribution
followed the dashed blue curve). That orange curve

shows KE0 saturated at all scales for which k exceeds

1023m21. Suppose the cutoff wavelength in one ensem-

ble is at 1km (the end of the heavy black line at wave-

number 6:33 1023 m21) and the cutoff wavelength for

the second ensemble is at 2km; in the context of the

ssLRS model, our previous question is, For which en-

semble will the KE0 spectrum grow most rapidly upscale

and approach the dashed green curve?

FIG. 1. Evolution of the perturbation KE spectrum plotted

at 6-h intervals (colored dashed lines; m3 s22) for the ssLRS

model when the initial error spectrum is saturated at the shortest

retained wavelength and negligible at all longer wavelengths.

The thick black line indicates the background saturation spec-

trum used by Lorenz, which is proportional to k25/3 except at

the planetary scales.

1More details of about the ssLRS model are provided in

section 4.
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In this paper, we examine the influence of numerical

resolution on the rate at which differences among en-

semble members due to initial-condition perturbations

increase in simulations of idealized mesoscale convec-

tive systems (MCSs) and in the ssLRS model of homo-

geneous surface quasigeostrophic turbulence. The rest

of this paper is organized as follows. Section 2 provides

details about the model configuration and the initial

perturbations imposed to create ensembles of simulated

MCSs. Section 3 describes an analysis of the perturba-

tion growth and ensemble spread in the MCS simula-

tions. Section 4 compares the upscale growth of initial

perturbations in the MCS simulations with that in the

ssLRS model. Last, section 5 contains the conclusions.

2. Model configuration and simulation strategy

The model configuration closely follows that in

WD17. The same nonhydrostatic cloud-resolving model

is used to generate ensembles of 1 control and 20

perturbed members, each at horizontal grid spacings of

1, 1.4, and 2km. Additionally, an ensemble with 1-km

grid spacing and quadrupled fourth-order numerical

diffusion, designated ‘‘1 km-D,’’ is also included. The

smallest resolvable wave (having a wavelength of 2Dx)
is effectively removed every 2.5 time steps in the 1-km-D

simulation. The background thermodynamic profile

used to initialize the model is identical to that of WD17,

as is the vertical wind profile, except that the westerly

wind is a constant 25m s21 above the layer of linear

wind shear between the surface and 5km. Individual

simulations are made on a 512km 3 512 km square

doubly periodic horizontal domain. The number of grid

points in the x and y directions varies based on the res-

olution, with 512, 366, and 256 grid points at 1, 1.4, and

2km, respectively. The integration time step is 2, 3, and

4 s at grid spacings of 1, 1.4, and 2km, respectively. In all

ensemble members, three identical bubbles 2K warmer

than the environment produce the initial updrafts, which

subsequently evolve into an organized MCS owing to

the wind shear. The bubbles are spheroidal with a 20-km

horizontal radius and 1.4-km vertical radius, centered

1.4 km above the surface at (x, y) locations of (100, 250),

(125, 175), and (150, 300) km. All other details of the

model are as in WD17.

The synthetic composite reflectivity for the un-

perturbed control members in the 1-km, 1-km-D, and

1.4- and 2-km simulations are shown at 5h in Fig. 2. In all

cases, a strong north–south-oriented line of thunder-

storms has developed. The reflectivity fields are very

similar, with modest increases in the north–south extent

of the line and losses in fine structure appearing as the

grid spacing or the numerical smoothing increases; there

are no major changes to the MCS structure or convec-

tive dynamics because of the differences in resolution.2

The control members are unperturbed, while the

other ensemble members have initial perturbations

added to the water vapor mixing ratio field in the form

q
y
5 ae2z/H sin

h
2p

�x
L
2f

x

�i
sin

h
2p

�y
L
2f

y

�i
, (1)

where the amplitude is a5 0.1 gkg21; L5 128km, giving

a two-dimensional horizontal wavelength of 90.5km; and

the vertical e-folding decay scale is H 51km. The phases

fx and fy (0#f, 2p) are generated randomly for each

ensemble member, and hence, the differences between

ensemble members originate in the difference in phase

between the perturbations and the initial warm bubbles.

The initial perturbations are imposed on large scales

for three reasons. First, it eliminates the sensitivity to the

otherwise arbitrary factor by which the scale of the

initial-condition perturbations exceeds the horizontal

grid spacing in the different ensembles by making that

factor very large. Second, it eliminates the sensitivity of

the initial-condition perturbations to numerical dissi-

pation; for example, if the initial perturbations were

imposed at 8 km, this would be a 4Dx wavelength in the

2-km ensemble and immediately subject to much more

numerical dissipation than in the 1-km ensemble, where

it would have a wavelength of 8Dx. Finally, the third

reason for imposing large-scale initial perturba-

tions is that these may be a more important source of

uncertainty than perturbations on the smallest re-

solved scales in very-high-resolution mesoscale models.

In particular, recent work (Durran and Gingrich 2014;

Durran and Weyn 2016; WD17) has highlighted a little-

known result in Lorenz (1969) suggesting that initial

large-scale errors can be as detrimental to forecasts as

initial small-scale errors of the same absolute amplitude.

Morss et al. (2009) used a similar strategy of imposing

initial perturbations at large scales in an investigation of

the influence of spatial resolution on the growth of

perturbation KE in a dry quasigeostrophic model.

In addition to the ensembles with moisture pertur-

bations present in the initial conditions, another set of

ensembles is constructed by adding the same moisture

perturbations when the MCSs and background circula-

tions are well established, at 4 h into the simulation,

thereby allowing the analysis of perturbation growth in a

complex background state.

2 Additional simulations with a horizontal grid spacing of 2.8 km

were also performed. These showed some important differences

from the rest of the simulations and are discussed further in

appendix B.
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3. The MCS ensembles

To gain physical intuition about the spread of per-

turbations in the 1-, 1.4-, and 2-km ensemble simula-

tions, the agreement among the members on the

location of strong convective elements is shown in

Fig. 3, which contours the number of ensemble mem-

bers, including the control, having synthetic reflectivity

matching or exceeding 45 dBZ at each spatial point. At

t 5 3 h into the simulations, there are a relatively large

number of members in agreement on the locations of

most convective cells. Nevertheless, the spread clearly

decreases with increasing grid spacing, with the 2-km

ensemble exhibiting nearly perfect alignment of every

significant high-reflectivity cell. By t 5 5 h, however,

there is much less certainty in the location of the

strongest convection in the 1-km ensemble, where there

is a wide swath of points at which only 9–13 members

agree on the location of the high-reflectivity cells. At

2-km resolution, on the other hand, the locations of these

cells are much more similar across the ensemble mem-

bers.At both 3 and 5h, the spread in the 1.4-km ensemble

lies in between that in the 1- and 2-km cases.

a. Growth of ensemble variance

The domain-averaged ensemble variance of a variable

f is

Var(f)5
1

n
x
n
y
n
e

�
nx

i51
�
ny

j51
�
ne

m51

(f
i,j,m

2f
i,j
)2 , (2)

where fi,j,m is the value at gridpoint (i, j) in the mth

ensemble member, the overbar denotes the ensemble

mean (excluding the control), and the summation is

over all ne 5 20 ensemble members and over all nx and

ny grid indices along the x and y coordinates. The

evolution of domain-averaged ensemble variance of

hourly accumulated precipitation, water vapor mixing

FIG. 2. The 5-h synthetic composite reflectivity for the control member of the (a) 1-km, (b) 1-km-D, c) 1.4-km, and

(d) 2-km ensembles. There is no convection outside of the subset of the domain shown.
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ratio qy at a height of z 5 2 km, and potential temper-

ature u at z5 2 km is shown in Fig. 4 for the ensembles

with 1-, 1.4-, and 2-km horizontal grid spacing. Vari-

ance increases roughly exponentially at times up to

about t 5 3 h (t 5 4 h for precipitation) and approxi-

mately linearly afterward. In general, the variance and

its growth rate decreases as the horizontal grid spacing

increases, and the differences over the first 4 h are

statistically significant. An exception appears in the

variance of qy for the 1.4-km ensemble, which exceeds

that for the 1-km ensemble after 4 h. The variance in

hourly precipitation increases particularly smoothly

because every point (plotted at 10-min intervals) con-

tains the accumulated precipitation over the previous

60min.

To more quantitatively assess the dependence of

the growth rate of domain-averaged ensemble vari-

ance on numerical resolution, Fig. 5 shows the evo-

lution of Var(qy) at z 5 2 km (blue curves) from each

ensemble on a logarithmic scale. After about 1 h,

log[Var(qy)] increases almost linearly for a period of

2–3 h. For each ensemble, a least squares linear fit is

calculated to log[Var(qy)] beginning at 1 h into the

simulations and ending at the first subsequent time

for which the slope starts decreasing.3 The doubling

time for Var(qy) is calculated for each ensemble

from the slope of this linear fit and displayed, along

with the standard deviation computed from the

slopes of the individual ensemble members, in each

panel of Fig. 5. These doubling times increase con-

sistently with increases in horizontal grid spacing,

and the differences between the doubling times at

each step up in the grid spacing exceeds twice the

standard deviation. While changes to the horizontal

grid spacing of the model clearly result in faster

ensemble spread at higher resolution, the 1-km-D

simulations with increased diffusion have a doubling

time very close to the 1.4-km simulations, suggesting

that the factor-of-4 increase in numerical smoothing

in the 1-km-D runs hinders the growth of Var(qy) in a

similar manner to coarsening the resolution by a

factor of
ffiffiffi
2

p
.

FIG. 3. Number of ensemble members (including control, giving a total of 21 members) matching or exceeding a synthetic re-

flectivity value of 45 dBZ at each point in the (a),(d) 1-, (b),(e) 1.4-, and (c),(f) 2-km ensembles at simulation times of (a)–(c) t 5 3

and (d)–(f) t 5 5 h.

3 Sensitivity tests where the slopes where calculated over hours

1–3 for all ensembles gave the same statistically significant relative

rankings of the ensembles.
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In addition to the variance, Fig. 5 includes curves

showing the evolution of the mean-square difference

(MSD):

MSD(f)5
1

n
x
n
y
n
e

�
nx

i51
�
ny

j51
�
ne

s51

(f
i,j,m

2fc
i,j)

2 , (3)

where fc denotes the variable in the control run, and the

square of the ensemble bias

Bias2(f)5
1

n
x
n
y

�
nx

i51
�
ny

j51

(f
i,j
2fc

i,j)
2
. (4)

The MSD is a measure of the error in the ensemble with

respect to the unperturbed control simulation and is the

sum of the variance and the square of the bias. Although

the square of the bias grows more rapidly than the var-

iance, as shown in Fig. 5, the contribution of Var(qy)

to MSD(qy) dominates that of Bias2(qy) until about t 5
3 h, while after t5 4 h, Var(qy) is approximately equal to

Bias2(qy). Hence, the growth in ensemble spread is

largely responsible for the initial growth of errors rela-

tive to the control, while at later times, the control

member is statistically indistinguishable from any indi-

vidual ensemble member. Spatial maps of MSD(qy) at

t 5 5 h are shown for all ensembles in Fig. 6. Noting the

logarithmically spaced contour intervals, these maps il-

lustrate the dominant contribution from the region of

active convection (cf. Fig. 2) to the total MSD in all

cases. Figure 6 also shows that, while the total MSD is

similar in magnitude across the ensembles, the locally

highest values occur in the ensemble with 1.4-km grid

spacing.

The rate at which Var(qy) grows faster as the resolu-

tion is made finer is remarkably similar to that which can

be obtained using dimensional analysis to compare the

growth of KE0 at different scales in homogeneous tur-

bulence. As discussed in Lilly (1972) and Palmer et al.

(2014), if E(k) denotes the background KE spectral

density per unit wavenumber (m3 s22) in homogeneous

isotropic turbulence, dimensional analysis yields a time

scale for circulations at wavenumber k of

T(k)} k23/2E21/2 .

Assuming E follows a power law such that E} k2p and

that T(k) is proportional to the time for the magnitude

of perturbations in KE0 to double at wavenumber k,

the ratio of doubling times for circulations of scale l and

al is

T(k)

T(k/a)
5a(p23)/2 . (5)

FIG. 4. Variance about the ensemble mean in (a) precipitation

accumulated over the last hour (mm2), (b) water vapormixing ratio

at a height of z 5 2 km (g2 kg22), and (c) potential temperature at

z 5 2 km (K2) for the 1- (blue), 1.4- (orange), and 2-km (green)

ensembles. Solid lines indicate the ensemble mean, dots indicate

the maximum and minimum ensemble members, and the shading

represents the range of one standard deviation from the mean.
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Similar to the cases discussed inWD17 (see their Fig. 6),

the background KE spectra in all our ensembles

develop a k25/3 slope by one hour into the simulation.

Let ra be the ratio in (5) for the case E} k25/3, then

ra 5a22/3.

In Table 1, the ratios ra for a equal to
ffiffiffi
2

p
and 2 are

compared with the ratios of the variance doubling times

given in Fig. 5 for the pair of 1.4- and 1-km simulations

and the pair of 2- and 1-km simulations, respectively.

The close agreement between the values of ra and the

ratios of the variance doubling times suggests that most

of the ensemble spread in the water vapor field at these

early times is produced by perturbations in the advec-

tive transport scaling with the grid resolution, that

the scaling of this quantity (which is second-order

in perturbation amplitude) works in a similar manner

to the perturbation kinetic energy, and that dimensional

analysis of this idealized system is at least roughly

capable of modeling the growth of ensemble variance

at early times in the simulations.4

b. Perturbation kinetic energy spectra and their
approach to saturation

The evolution and approach to saturation of the

perturbations in kinetic energy about the ensemble

mean KE were evaluated as a function of horizon-

tal scale by calculating the two-dimensional total and

FIG. 5. Var(qy) (blue),MSD(qy) (green), and Bias
2(qy) (orange) at z5 2 km as a function of time for the (a) 1-km,

(b) 1-km-D, (c) 1.4-km, and (d) 2-km ensembles. The gray shading denotes the region where the linear fit was

calculated to determine the variance doubling times, which are reported in the panels along with one-standard-

deviation confidence intervals.

4 This result may only hold for a relatively narrow range of

horizontal grid spacings where the dynamics of the system are not

significantly affected by the numerical resolution; see appendix B.
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perturbation kinetic energy spectral densities following

WD17andusing the numpy.fftmodule inPython.At a given

height and time, denoting the zonal andmeridional velocities

of themth ensemblemember asum and ym, respectively, and

denoting the two-dimensional discrete Fourier transform

of a variable f as f̂ and its complex conjugate as f̂*, the

total (background) KE spectral density is

dKE
m
(k

h
)5

DxDyDk

8p2n
x
n
y

[û
m
(k

h
)û

m
* (k

h
)1 ŷ

m
(k

h
)ŷ

m
* (k

h
)] ,

(6)

where kh is the magnitude of the 2D horizontal wave-

number; nx and ny are the number of grid points in

the x and y directions, respectively; Dx and Dy are the

horizontal grid spacing along those directions; and the

leading coefficient in (6) is derived in Durran et al.

(2017). The spectral density at each individual hori-

zontal wavenumber pair (kx, ky) is added to the bin

for which kh 2Dk/2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x 1 k2

y

q
# kh 1Dk/2, whereDk5

2p/512 km21 is the smallest resolved wavenumber, corre-

sponding to the longest wavelength in the periodic domain.

Theperturbation kinetic energy spectral density dKE0
m is also

calculated from (6) except that the velocities are replaced by

differences from the ensemble mean; that is, u0
m 5 um 2 u,

where the overbar denotes the ensemble mean. Computing

perturbations about the ensemble mean follows Lorenz

(1969) and reflects the growth in ensemble variance.5 For

comparison with the generalized Lorenz model, dKE anddKE0 are computed as the average of dKEm and dKE0
m over

all ensemble members. The spectra are also scaled by a

FIG. 6. Spatial maps of MSD(qy) at z 5 2 km and t 5 5 h for the (a) 1-km, (b) 1-km-D, (c) 1.4-km, and (d) 2-km

ensembles. Note the logarithmic spacing of the contour intervals and thewhite region around (x, y)5 (360, 160) km

in (c) where the MSD exceeds the upper limit of the color scale.

5 Essentially identical results are obtained if the perturbations

are computed as differences from the unperturbed control mem-

ber, rather than the ensemble mean, except that as saturation oc-

curs, the perturbation KE values approach twice those of the

background KE.
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wavenumber-dependent compensating factor (Durran

et al. 2017) to reduce systematic noise introduced by

binning.

Spectra of perturbation and total KE from the 1- and

2-km simulations with initial-condition perturbations in

the humidity at 91-km wavelength are shown in Fig. 7.

These spectra are vertically averaged over the layer

0# z# 16 km. The dKE0 spectrum at scales larger than

those directly influenced by numerical dissipation (i.e.,

larger than roughly 7Dx) is relatively flat. In contrast to

the upscale KE0 cascade apparent at small scales in Fig. 1,

the perturbation KE grows primarily up-amplitude. At

1h, dKE0 for the 1-km ensemble exceeds that of the 2-km

ensemble on scales shorter than about 20km, whereas

values of dKE0 for both ensembles are quite similar at

longer wavelengths. By 2h, the differences have moved

well upscale, with dKE0 for the 1-km ensemble exceeding

that for the 2-km ensemble over scales up to roughly

200km. At 3h, dKE0 for the 1-km ensemble exceeds that

for the 2-km case at all scales. By 6h, the relative differ-

ence in dKE0 between the two ensembles is much less than

at 3h, and KE0 at the shortest wavelengths has saturated

in both ensembles.

As an aggregatemeasure of the scale-dependent loss of

predictability useful for interensemble comparisons, let

l50 be themaximumhorizontal scale at which the 0–16-km

vertically averaged dKE0/dKE ratio exceeds 50%. Values of

l50 are plotted as a function of time for all ensembles in

Fig. 8. As expected from previous studies (Lorenz 1969;

Rotunno and Snyder 2008; Zhang et al. 2007; WD17), l50

increases with time as dKE0 grows upscale. The fastest

growth and highest values of l50 at all but the latest times

occur in the 1-km ensemble. As the horizontal grid spacing

is increased, l50 grows more slowly. The curve for the

1-km-D ensemble approximates that for the 1.4-km en-

semble, again suggesting that numerical diffusion has a

similar effect to a truncation of the resolved scales.

4. Interpretation via the ssLRS model

To investigate the influence of spatial resolution

on the growth of the perturbation KE in a simpler

framework, we consider the ssLRSmodel of Durran and

Gingrich (2014); this is an extension of the homogeneous

turbulence models developed in Lorenz (1969) and

Rotunno and Snyder (2008) in which KE0 at each

wavelength saturates smoothly in time instead of expe-

riencing the abruptly truncated growth of the original

Lorenz formulation. The ssLRS model is highly ideal-

ized; it neglects moist processes and relies on linearized

dynamics except for the saturation criteria limiting the

growth of kinetic energy perturbations. Nevertheless,

somemodest justification for its relevance is provided by

the similarity of the ratios of variance doubling times at

different resolutions given by the full convective cloud

model and by the dimensional analysis of homogeneous

turbulence (Table 1). In addition, the behavior of the

Lorenz model is of interest in its own right because it

formed the basis for the original analysis of upscale

error growth.

Consistent with observations in the mesoscales, in the

ssLRS model, we impose a background KE spectrum

proportional to k25/3, and, consistent with this choice of

spectral slope, we use the surface quasigeostrophic dy-

namical formulation. Adjacent wavenumbers differ by a

factor of r5
ffiffiffi
2

p
. We retain 30 wavenumbers; the three

largest correspond approximately to wavelengths of 1,

1.4, and 2km. We run the model using 30 wavenumbers

to simulate 1-km resolution and 28 wavenumbers to

simulate 2-km resolution.

TABLE 1. Ratio of variance doubling times at different pairs of

scales from the dimensional analysis of homogeneous turbulence

ra and as deduced from the simulations at different resolutions in

Fig. 5.

Ratio of scales Dimensional analysis Simulations

1:
ffiffiffi
2

p
0.79 0.81

1:2 0.63 0.63

FIG. 7. Evolution of vertically averaged perturbation kinetic en-

ergy spectra dKE0 (m3 s22) in the idealized MCS simulations using

1- (faint solid lines) and 2-km (dark dashed lines) resolutions. The

thick black lines show the background dKE spectrum for both the

1- and 2-km ensembles at 6 h. The solid gray line provides a back-

ground reference spectrum proportional to k25/3(Nastrom andGage

1985). Initial perturbations in the moisture field are at 91 km; this

wavelength is included in the 2Dwavenumber bin centered at 85 km.
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Figure 9a shows evolving KE0 spectra in the ssLRS

model, comparing results at resolutions of 1- (faint solid

colored lines) and 2-km (dashed colored lines) resolu-

tions, when the initial KE0 is very small6 except at

wavenumber 16, which corresponds to approximately

100 km. The initial KE0 at wavenumber 16 has the same

amplitude as the background KE at wavenumber 30. At

both resolutions, the initial perturbations propagate

downscale and subsequently grow upscale, with the

fastest growth occurring in the shortest wavelengths, but

the perturbations in the 1-km-resolution configuration

grow upscale faster than those in the 2-km-resolution

configuration. The smallest scale at which the KE0

spectra for both resolutions match also increases with

time. At 1 h, the KE0 spectra at both resolutions are

identical at all wavelengths longer than about 4 km; by

4 h, the wavelength beyond which they are identical has

increased to about 20 km. At 6 h, the KE0 at scales of

3–4 km is saturated in the fine-resolution case, while

complete saturation has not yet occurred at any wave-

length in the coarse-resolution case.7 Also of note is the

decrease in KE0 at wavenumber 16. Negative values of

KE0
16 develop by 6h; these nonphysical negative values

arise from a flaw in Lorenz’s original model that is dis-

cussed further in appendix A.

When the initial KE0 is only at a large scale, as in

Fig. 9a, it takes some time for downscale propagation to

saturate the smallest resolved scales, and saturation

occurs first in the model with the finest spatial resolu-

tion. In Fig. 9b, we again compare the evolution of the

KE0 spectra at resolutions of 1 and 2km except that, in

both cases, the initial KE0 is set equal to the 6-h spectral

distribution of KE0 for the 1-kmmodel shown in Fig. 9a.8

KE0 at the smallest scales in both the 1- and 2-kmmodels

are, therefore, already saturated at t5 0. The sub-

sequent evolution of the KE0 spectra at both resolutions

is essentially identical. Taken together, the results in

Figs. 9a and 9b demonstrate that using finer resolution in

the ssLRS model produces more rapid KE0 growth

though the influence of unsaturated perturbations in the

smallest scales. Specifically, the inclusion of wavelengths

smaller than any given ls increases the growth rate of

KE0 at wavelengths larger than or equal to ls until the

KE0 at ls saturates.

The resolution dependence of the spectral evolution of

the unsaturated KE0 perturbations in Fig. 9a is similar to

that shown for a dry quasigeostrophic (QG) model in

Fig. 8 of Morss et al. (2009), although their perturbation

amplitudes are much smaller relative to the background

KE spectrum. The growth rates in Morss et al. (2009) are

also much slower than those in Fig. 9a because the slope

of the background KE spectrum in their model is only

slightly shallower than k23 and their 31-km numerical

resolution is much coarser. The qualitative agreement

between the ssLRS results and those obtained with the

more complex dry QG model of Morss et al. (2009) en-

courages us to compare the ssLRS results with those from

the evenmore complex cloud-resolvingMCS simulations.

A plot of dKE0 spectra in the MCS simulations analo-

gous to Fig. 9a is shown in Fig. 10, for the set of en-

sembles where perturbations are introduced at 4 h into

the simulations, when theMCSs are well developed. The

perturbation growth in the idealized MCSs ensembles

parallels that of the ssLRS model in three ways. First, a

rapid downscale propagation of perturbations is evident

even at 1min. Second, the growth rate of dKE0 at short
wavelengths is more rapid in the 1-km-resolution sim-

ulations than in the 2-km simulations. Third, the small-

est wavelength up to which the 1- and 2-km simulations

exhibit the same values of dKE0 increases with time: from

about 9km at 1min to over 20km at 30min and all the

FIG. 8. Scale l50 at which dKE0/dKE exceeds 50% as a function

of time for the 1-km (blue circles), 1-km-D (yellow stars), 1.4-km

(green triangles), and 2-km (red squares) ensembles.

6 After rescaling tomatch the dimensional plots, the initial KE0 is
O(1027) at all wavelengths.

7 The KE0 growth in a 1.4-km ssLRS simulation (truncated at

wavenumber 29) lies in between the coarse- and fine-resolution

behaviors (not shown).

8 To fix the negative value at wavenumber 16, discussed in ap-

pendixA, we set KE0 at wavenumber 16 to be the average of that at

wavenumbers 15 and 17.
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way to the scale of the initial perturbations (91km) at 1h.

The parallels between the perturbation KE growth in the

ssLRS model and the cloud-model simulations suggest

that, in both models, upscale growth from small scales

that are not yet saturated produces the main difference in

the dKE0 growth rates at different horizontal resolutions.

Comparing dKE0 to the backgrounddKE (thick black lines)

in Fig. 10 shows that the perturbation KE does not be-

come saturated at any scale within the time period shown,

suggesting that perturbations on small scales may con-

tinue to produce upscale ensemble spread in the MCS

simulations longer than in the ssLRS model.

5. Conclusions

We have shown that ensemble spread grows more

rapidly in simulations of idealized mesoscale convective

systems as the horizontal grid spacing decreases from 2,

to 1.4, and finally, to 1 km. In contrast to previous

studies, in each of these cases, the numerical resolution

was sufficient to reasonably represent the dynamics of

deep convection. The evolution of the spread in an en-

semble of 1-km-resolution simulations with increased

fourth-order numerical diffusion was similar to that in

the 1.4-km ensemble, demonstrating that the changes

in the growth rate respond to changes in the ampli-

tude of the shortest waves and not simply the numeri-

cal resolution per se. These results support the idea

that the need for stochastic parameterization meth-

odologies such as ECMWF-type SKEB and SCB to

artificially increase ensemble dispersion (Shutts 2005;

Leutbecher et al. 2017) should be reduced as the res-

olution of cloud-resolving ensemble prediction sys-

tems increases.

FIG. 9. Evolution of perturbation kinetic energy spectra (m3 s22) generated by the ssLRS model (see text). Faint

solid lines (dark dashed lines) indicate the model truncated such that 1 (2) km is the smallest resolved scale. (a) The

initial KE0 is localized to wavenumber 16. (b) The initial KE0 spectrum is the 6-h spectrum at 1-km resolution from

(a). The thick black line indicates the background saturation spectrum, proportional to k25/3.

FIG. 10. Evolution of dKE0 (m3 s22) in the idealized MCS simula-

tions with perturbations added at 4 h into the simulations (see text).

Faint solid lines (dark dashed lines) indicate themodel with 1 (2)-km

horizontal grid spacing. The thick black lines indicate the total KE

spectrum of both the 1- and 2-km simulations averaged over 1 h

(model times 4–5 h). The solid gray line indicates a background

reference spectrum proportional to k25/3 (Nastrom and Gage 1985).
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The initial perturbations were introduced at a wave-

length of 91km, rather than in the shortest scales, to ensure

that they could be represented with essentially identical

accuracy independent of the numerical resolution and be-

cause initial errors on such scales are a potentially impor-

tant source of forecast error (Durran and Gingrich 2014).

The initial perturbations spread rapidly across all scales and

grew significantly on all scales. Nevertheless, over the first

3h, the most rapid growth occurred at wavelengths smaller

than roughly 30km. The perturbation kinetic energy dKE0

in the smallest wavelengths grew fastest in the finest-

resolution ensembles. The longest wavelength at whichdKE0 exceeds 50%of the backgroundKE spectrumdKEwas

always largest in the 1-km ensemble and smallest in the

2-km ensemble. There was a systematic and statistically

significant difference in the doubling time of ensemble

variance across the various effective numerical resolutions.

The ratios of the doubling times for pairs of ensembles of

MCS simulations with numerical resolutions having ratios

of 1.4:1, or 2:1, closely matched those obtained through

dimensional analysis of homogeneous turbulence.

Encouraged by this similarity in the resolution de-

pendence of the variance doubling times in our complex

numerical simulations and a simple dimensional analysis

of homogeneous turbulence models, we examined KE0

growth as a function of numerical resolution in the ssLRS

model (Lorenz 1969; Rotunno and Snyder 2008; Durran

and Gingrich 2014). The ssLRS model responded to an

initial large-scale perturbation with scale-dependent er-

ror growth grossly similar to that in ourMCS simulations.

In particular, the perturbations in the ssLRS model

spread rapidly downscale from an initial 100-km wave-

length and subsequently grew back upscale, with more

rapid growth in the calculations corresponding to the

higher-numerical-resolution ensemble.9 Our results are

also similar to those obtained by Morss et al. (2009)

using a dry quasigeostrophicmodel atmultiple horizontal

resolutions, whose underlying dynamics are much closer

to those in the ssLRS model than are the dynamics gov-

erning our cloud-resolving model for deep convection.

Despite their varying dynamical complexity, all three

systems show more rapid KE0 growth at finer resolution.

Let us now return to the question posed in the in-

troduction about the influence of numerical resolution on

upscale perturbation growth when the initial perturbation

KE0 follows the dashed orange curve in Fig. 1. As dem-

onstrated in Fig. 9b, there will be no difference in the

rate of ensemble spread between the fine- and coarse-

resolution cases because the initial KE0 is saturated

throughout all the smallest scales, including both the 1-

or 2-km cutoff wavelengths. Nevertheless, many recent

studies have found that the KE0 spectrum in actual en-

semble forecasts grows primarily up-amplitude rather

than as an upscale cascade like that in Fig. 1 (Mapes

et al. 2008; Durran andGingrich 2014; Durran andWeyn

2016). In such cases, the small-scale KE0 saturates rather
slowly, and the situation shown in Fig. 1 does not apply;

instead, one would expect more opportunity for un-

saturated small-scale KE0 to influence larger scales

and therefore more rapid ensemble spread in higher-

resolution simulations. This up-amplitude growth ap-

pears to slow the saturation of KE0 at the smallest scales

in the our ensemble simulations of MCS, thereby lead-

ing to our basic result that the ensemble spread grows

more rapidly at higher resolution.
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APPENDIX A

AFlaw in the Lorenz Model

The experiment in Fig. 9a reveals a flaw in the Lorenz

model. The perturbation kinetic energy at wavenumber

bin 16 (KE0
16), where the initial error was isolated, de-

creases over time, especially at 4 h and beyond, be-

coming negative at 6 h (the value at this time is not

plotted on the logarithmic axis). Values for KE0
16 are

listed for hours 1–6 in Table 2, which were obtained

by integrating the ssLRS system using MATLAB’s

TABLE 2. Evolution of perturbation KE at wavenumber 16

(KE0
16), where the initial error was introduced, in the ssLRSmodel

shown in Fig. 9a.

Time (h) KE0
16 (m

3 s22)

0 5.597

1 5.332

2 4.574

3 3.438

4 2.090

5 0.725

6 20.459

9 These simulations also revealed a flaw in the original Lorenz

model that is discussed in appendix A.
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ode45 routine with an absolute error tolerance equal to

1026 times the background saturation KE spectrum.

Negative values of KE0
k (which is proportional to the

sumof themagnitude squared of the Fourier transformof

the horizontal perturbation velocity components at wave-

number k) are not correct and must arise from inaccuracies

in some combination of the closure approximations used

in Lorenz’s model and the numerical calculations of the

coefficient values for that model.

The evolution ofKE0 in the Lorenz system is governed

by the system of second-order differential equations:

d2Z
k

dt2
5 �

n

l51

C
k,l
Z

l
, (A1)

where the Zk (the error) is the ensemble-average KE0

about the ensemble mean integrated with respect to the

logarithm of the wavenumber over the kth wavenumber

bin,C is a constantmatrix governing scale interactions, and

n is the number of wavenumber bins in the model (Lorenz

1969; Rotunno and Snyder 2008). The values of C are

negative along the diagonal, indicating that, for a positive

error at wavenumber bin k, the tendency of the rate of

error growth is negative. In the absence of sufficiently large

errors at adjacent wavenumbers, this produces an initial

decrease in Zk. When Ck,k is sufficiently negative, initial

errors concentrated at a single wavenumber k will tem-

porarily generate negative values ofZk. OnceZk becomes

negative, the sign of the second derivative reverses in (A1),

and the sign of Zk eventually reverses back to positive,

avoiding the problem at later times when the errors are

more widespread in spectral space.

As evident in Lorenz (1969) and in Tables 1–4 of

Rotunno and Snyder (2008), the entries on the main

diagonal of the C matrix are negative for all combina-

tions of k25/3 and k23 background KE spectra and for

either barotropic vorticity or surface quasigeostrophic

dynamics.A1 In contrast to the total KE, KE0 is not

conserved, and it does not spread to adjacent wave-

numbers by simple advection and diffusion. One might

wonder if the diagonal entries in C should be non-

negative, which would be a sufficient, but not a neces-

sary, condition to ensure KE0 remained positive definite

in every wavenumber bin at all stages of the integration.

At least for single wavenumbers, as opposed to aver-

ages over bins, one can rigorously show that the en-

semble average kinetic energy eKe2K of an error

present only at one isolated 2D wavenumber K should

remain unchanged using expressions from earlier steps

in Lorenz’s derivation. If error is present only at a single

wavenumber, (19) of Lorenz (1969) reduces to

d2(e
K
e
2K

)

dt2
5 4gS

0
S
0
A2

K,KeKe2K
,

but by Lorenz’s (13), AK,K is zero, so there should be

no change in eKe2K. To interpret this result, note that ex-

cept for an ad hoc treatment of nonlinear saturation, the

Lorenz model is linear, and it estimates the influence of

triad interactions that produce forcing at wavenumber K

via interactions with perturbations at wavenumber L and

mean-state fluctuations at wavenumberM5K2L.When

K5L, the mean-state wavenumber involved in the in-

teraction is M5 0. Since the wavenumber-0 background

flow vanishes in the isotropic system assumed by Lorenz,

interactions with it cannot change the error amplitude.

While the single-wavenumber analysis suggests that

Ck,k should be zero, this result does not directly apply to

Lorenz’s equation set, which is averaged over wave-

number bins, because (A1) is obtained by assuming the

background and error energies vary smoothly with the

magnitude of the wavenumber and that Z(K) can be

treated as a constant when averaging Lorenz’s (27) over

eachwavenumber bin. Evidence thatCk,k can be negative

is provided byLeung (2017, their Fig. 3.2), who conducted

simulations of ensemble error growth in homogeneous,

isotropic turbulence with a surface quasigeostrophic

spectral model, bin averaged the results, and found that

the error can decrease in individual bins as part of a short-

term initial adjustment. If, in our experiments with the

ssLRSmodel, we empirically modify onlyC16,16 to be less

negative, we find that multiplication by a factor less than

or equal to 0.763 is sufficient to ensure that the initial

adjustment never drives Z16 negative. Similar empirical

tests at other wavenumbers suggest that reducing the

magnitude of all the diagonal elements to about 0.74 of

their original value would be enough to avoid the devel-

opment of negative Zk when the initial KE0 is concen-
trated entirely in one arbitrary wavenumber bin. Of

course these empirical experiments only establish that it

is not necessary forCk,k to be nonnegative to avoid initial

short-term negative values for some initial distributions

of Zk. Further research to definitively establish the cor-

rect values for Ck,k would be welcome.

APPENDIX B

Comparison of 2.8-km-Resolution MCS Simulations
to the Rest

An ensemble of simulations of MCSs with horizontal

grid spacing of 2.8km was also constructed; the results

A1A few positive entries appear in these tables where Lorenz

assumed the background KE started dropping toward zero at

planetary-scale wavelengths.
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from this ensemble are shown in Fig. B1. The ensemble

agreement at t5 5h into the simulations for this ensemble

(Fig. B1d) is qualitatively similar to that of the 2-km en-

semble (Fig. 3f) except for one prominent cell that only has

16-member agreement at best. In contrast to the de-

pendence on grid spacing in the finer-resolution cases, the

variance growth rates relative to those in the 2-km en-

semble did not significantly slow down. As shown in

Fig. B1c, the variance doubling time at 2.8-km grid spacing

was 25:66 1:8min, or nearly identical to that of the 2-km

ensemble, and well within the error bounds. The modest

change in the 2.8-km case is further illustrated by the

evolution of l50 with time shown in Fig. B1a, which is

identical to Fig. 8 except that the 2.8-km ensemble has

been added. At early times, l50 is longer in the 2.8-km

ensemble than in the 2-kmensemble, although by hour 6, it

has become substantially shorter.

We hypothesize that the 2.8-km grid is coarse enough

to change the scaling of the perturbation growth rates by

modifying the structure and growth of the convective

elements. (One would certainly expect a major change

in the fidelity of convective simulations, and therefore

perturbation growth rates, at very coarse resolutions like

10km.) Some brief quantitative support for this hy-

pothesis is provided by the absolute maximum in both

time and space of the updraft velocity in the control

members of each ensemble. The maximum updraft ve-

locity gradually decreases from 41.8 to 34.3m s21 as the

resolution is coarsened from 1 to 2km, but themaximum

updraft velocity of the 2.8-km control simulation is only

24.4m s21, a steep decline. The simulation with 2.8-km

resolution is substantially reducing the updraft velocities

and therefore not realistically representing the strong

convection.

FIG. B1. Additional results for the ensemble with 2.8-km resolution. (a) As in Fig. 8, but including results from

the 2.8-km simulations. (b) As in Fig. 2, but for model-simulated composite reflectivity at 5 h. (c) As in Fig. 5, but

for domain-averaged Var(qy) (blue), Bias
2(qy) (orange), and MSD(qy) (green). (d) As in Fig. 3, but for number of

ensemble members with synthetic reflectivity at or above 45 dBZ.
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