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Linear theory has long been used to study mountain waves
and has been successful in describingmuch of their behaviour.
In the simplest theoretical context, that of two-dimensional
steady-state flowwith constant Brunt-Väisälä frequency (N )
and horizontal wind speed (U ), finite-amplitude effects are
relatively minor until wave breaking occurs. However, in
more complex environmental profiles, significant finite-amplitude
effects occur below the wave-breaking threshold. We con-
structed a linearized version of a fully nonlinear time-dependent
model, thereby facilitating direct comparisons between lin-
ear and finite-amplitude solutions in cases with upstream
profiles representative of typical real-world events.

Beginningwith the simplest profile that includes a tropo-
pause, namely an environmentwith constant upstreamwind
speed and two layers of constant static stability, we pro-
gressively investigate more complex profiles that include
vertical wind shear typical of the mid-latitude westerlies.
Our results demonstrate that even without wave breaking,
finite-amplitude effects can play an important role in modu-
lating themountain-wave amplitude and gravity-wave drag.
The modulation is a function of the tropopause height and
is most pronounced when the cross-ridge flow increases
strongly with height.
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2 Metz and Durran

1 | INTRODUCTION AND BACKGROUND6

Linear theory has been applied to the study of mountain waves for decades, including some of the earliest works7

on the subject (Queney, 1948; Scorer, 1949) and some of the latest analysis of observational data (Smith and Kruse,8

2017). The relationship derived by Eliassen and Palm (1960) between vertical energy andmomentum fluxes for steady9

nondissipating mountain waves has been verified using observations from recent field campaigns (Smith et al., 2008,10

2016). Wentzel-Kramers-Brillouin (WKB) ray-tracing has been successfully used to explain gravity propagation into11

the middle atmosphere (Marks and Eckermann, 1995; Guest et al., 2000). There is, therefore, considerable evidence12

that linear theory provides a reasonably good approximation to the dynamics governing gravity-wave propagation13

through much of the atmosphere.14

Partly for this reason, as well as for simplicity and to minimize computational cost, linear theory is widely used in15

the parameterization of orographic gravity wave drag (GWD) in both numerical weather prediction (NWP) and general16

circulation models (GCMs). In particular, the estimate of the low-level mountain-wave momentum flux typically uses17

the functional dependence on the near-surface wind Us , static stability Ns , and the unblocked mountain height hub18

given by linear-theory: NsUsh2ub. Farther aloft, the changes in wave amplitude and the level of wave breaking are19

parameterized using the WKB assumption (e.g. Palmer et al., 1986; McFarlane, 1987; Kim and Arakawa, 1995; Kim20

et al., 2003; Kim and Doyle, 2005). While improvements to orographic GWD parameterizations have been made21

to include low-level flow blocking (e.g. Lott and Miller, 1997; Kim and Doyle, 2005) and mountain anisotropy (e.g.22

Scinocca and McFarlane, 2000; Kim and Doyle, 2005; Choi and Hong, 2015), major global modelling centres such as23

the U.S. National Centers for Environmental Prediction (NCEP; Chen et al., 2019; Zhou et al., 2019), the European24

Centre for Medium-Range Weather Forecasts (ECMWF; Sandu et al., 2016; ECMWF, 2020), and the UK Met Office25

(Walters et al., 2017) continue to estimate the momentum flux in the waves launched by the mountain as proportional26

to NsUsh2ub.27

Nevertheless, nonlinear processes can be important in setting the amplitude at which mountain waves are gen-28

erated, but the importance of nonlinearity in regulating wave amplitude is poorly understood, perhaps because so29

much theoretical attention as been devoted to the special case in which the upstream environmental Brunt-Väisälä30

frequency N (z ) and the cross-mountain wind speedU (z ) are constant with height. When N andU are constant, the31

streamline displacement δ (x , z ) in steady two-dimensional Boussinesq flow over such a ridge is governed by Long’s32

equation (Long, 1953),33 (
∂2

∂x2
+
∂2

∂z 2

)
δ +

N 2

U 2
δ = 0. (1)34

Here x is the horizontal coordinate perpendicular to the ridge-line; z is the vertical coordinate.35

Although Long’s equation is a linear partial differential equation, it may be derived from the fully nonlinear equa-36

tions without making any small-amplitude assumptions. Nevertheless, if U is constant, Eq. 1 may also be derived by37

assuming the mountain is infinitesimally high and linearizing the governing equations in the usual manner. When N38

and U are constant, the only difference between the linear and nonlinear solutions arises from the lower boundary39

condition. Letting h (x ) be the height of the topography, the lower boundary condition requires δ [x , h (x ) ] = h (x ) in40

the exact finite-amplitude case and is approximated by δ (x , 0) = h (x ) in the small-amplitude limit.41

As one might guess from the similarities in the governing equations for linear and finite-amplitude perturbations,42

when N and U are constant the influence of nonlinear dynamics on the wave structure is often relatively minor. This43
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similarity can be appreciated by comparing the linear and nonlinear solutions1 in Fig. 1, which is for a case with44

N = 0.01 s−1, U = 10m/s, and Nhm/U = 0.6, where hm is the mountain height. Nonlinear processes steepen the45

streamlines above the mountain around z = 4.5 km, which is 3/4 of a hydrostatic vertical wavelength (2πU/N ) above46

the topography. Despite the modest differences in the shape of the streamlines between the linear and nonlinear47

waves, the wave amplitude is almost identical in both cases. Hence, nonlinear processes do not have a dramatic48

impact on the mountain-wave momentum flux generated in constant-N -and-U flow over a ridge unless the ridge is49

high enough to force wave overturning.50

In contrast to the constant-N idealization, there is typically a factor of two change in static stability between51

the troposphere and the lower stratosphere, and changes in the height of a sharp tropopause can strongly modulate52

the strength of momentum fluxes associated with vertically propagating hydrostatic mountain waves. If there is a53

factor of two difference in N across the tropopause and U is the same constant value in both layers, the ratio of the54

momentum fluxes in the optimally tuned case to the maximally detuned case is a factor of four in linear mountain55

waves (Blumen, 1965; Klemp and Lilly, 1975). The wave reflections at the tropopause responsible for this variation in56

momentum fluxes are not captured in aWKB framework, as they are neglected by the fundamental WKB assumption57

of a slowly-varying mean state. Laprise (1993) examined the appropriateness of applying the WKB approximation to58

linear wave propagation. He found that while the WKB approximation often provided a good estimate of the onset59

of linear steady-state wave breaking (i.e. where Nh/U = 1.0), it often under- or over-estimated the drag significantly60

compared to a linear steady-state columnmodel. Furthermore, as shown in the semi-analytic analysis in Durran (1992,61

their Fig. 7), even such linear calculations for complex atmospheric profiles as in Laprise (1993)’s steady-state column62

model may themselves dramatically over- or under-estimate the momentum fluxes in finite-amplitude non-breaking63

waves.64

The results of Blumen (1965) and Klemp and Lilly (1975) assume discontinuous jumps in static stability. As noted65

by Blumen (1985) and others, the partial reflection of vertically propagating waves at the tropopause decreases as the66

thickness of the tropopause transition layer is increased. Teixeira and Argaín (2020) related the decrease in reflection67

coefficient to the surface pressure drag, and as might be expected, the variation in pressure drag is smaller for larger68

tropopause thicknesses.69

Nevertheless, evidence suggests a discontinuity may often be the best approximation for the tropopause. Birner70

(2006) constructed a climatology of the fine-scale structure of the tropopause and found that the transition between71

tropospheric and stratospheric values of static stability is often quite sharp and essentially discontinuous. While a72

simple discontinuity in static stability can therefore serve as a prototypical model for the tropopause, it is still useful73

to examine how a smoother tropopause impacts the solution. Teixeira and Argaín (2020) did conduct a preliminary74

analysis of nonlinear effects on their smooth tropopause solutions, but many of their cases (when dimensionalized75

with realistic values) result in quite broad tropopause transition layers. In this paper we will extend the investigation76

in Teixeira and Argaín (2020) to consider thinner and more realistic tropopause transition layers.77

Significant vertical variations in U (z ) are common during most real-world mountain wave events. Defining the78

square of the Scorer parameter as79

l 2 =
N 2

U 2
− 1

U

d 2U

dz 2
, (2)

1There are two ways to display streamlines for a mountain-wave linear solution; their differences and our approach are discussed in Appendix B.
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the linear, two-dimensional, steady-state Boussinesq wave equation in the presence of vertical wind shear is80 (
∂2

∂x2
+
∂2

∂z 2

)
w + l 2w = 0, (3)

where w is the vertical velocity. In contrast to the case with constant U and Eq. 1, the nonlinear governing equations81

cannot be expressed in a form similar to Eq. 3, suggesting that nonlinear effects could be more significant in the82

presence of shear. While nonlinear effects in the presence of shear have been examined previously by Wells and83

Vosper (2010), we investigated stronger finite-amplitude effects by simulating higher mountains than the 10m high84

ridges considered in their paper.85

Since the numerical method used in Durran (1992) was based on two-layer solutions of Long’s equation, it is86

unable to incorporate smooth vertical variations of static stability, which is needed to explore a smooth transition87

region at the tropopause. It is also unable to incorporate wind shear. To overcome these limitations, we employed a88

different methodology by linearizing a time-dependent numerical model and comparing its simulations with those of89

its nonlinear counterpart. This approach allowed us to investigate a much larger space of background profiles than90

was possible in previous studies.91

The rest of the paper proceeds as follows. The linearization of the model and its configuration are described in92

Section 2. The environmental conditions for the various numerical experiments are described in Section 3. We analyse93

the results of our simulations in Section 4, and provide further perspective on the way that finite-amplitude effects94

impact the flow in Section 5. Section 6 contains our conclusions.95

2 | MODEL DESCRIPTION96

Our nonlinear simulations are performed with the University ofWashington meso12model (Durran and Klemp, 1983)97

running in a Boussinesq configuration. By neglecting the decrease in mean density with height, the Boussinesq as-98

sumption reduces the chance of stratospheric wave breaking in our simulations. This model also serves as the basis99

for our linearized version. For simplicity in implementing the linearization, we utilize leapfrog time differencing with a100

Robert-Asselin time filter and fourth order advection in both the linear and nonlinear models.101

2.1 | Linearization102

For the model to be fully linear, three components must be linearized: the advection terms, the lateral boundary103

conditions, and the lower boundary condition. The radiation upper boundary condition is already linear (Durran,104

2010) and requires no modification. For the basic state, we specify vertically varying but horizontally homogeneous105

profiles of potential temperature θ̄ (z ) and horizontal wind speed ū (z ) . The base-state vertical velocity w̄ (z ) is taken106

to be identically zero.107

In the linear configuration, the coordinate surfaces are flat, and no terrain-following coordinate transformation is108

required. Letting overbars denote the vertically-varying basic state and primes the perturbations, the advection terms109

are simply linearized as110

ui
∂s j

∂xi
= ūi

∂s′
j

∂xi
+ u′i

∂s̄ j

∂xi
(4)111

where (u1,u2) = (u,w ) , (x1, x2) = (x , z ) , and (s1, s2, s3) = (u,w , θ) . The outflow boundary conditions are that of112
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Klemp andWilhelmson (1978), but with a linearized advection term. For example, at the left boundary, their Equation113

2.27,114

∂u

∂t
+

(
u + c∗

) ∂u
∂x

= 0, (5)115

becomes116

∂u′

∂t
+

(
ū + c∗

) ∂u′
∂x

= 0. (6)117

Here c∗ is a prescribed outflow phase speed. Waves with this phase speed approaching the boundary are perfectly118

transmitted through the boundary, while all others are imperfectly transmitted (Durran, 2010).119

2.2 | Model Configuration120

Our simulations are conducted in two dimensions (x , z ) to explore a larger parameter space and also to compare121

with the two-dimensional two-layer semi-analytic solutions of Durran (1992). However, in contrast to Durran (1992),122

which used a Witch of Agnesi profile given by123

h (x ) = hm a
2

(x − x0)2 + a2
, (7)124

where hm is the mountain crest height, a is the half-width, and x0 is the centre of the mountain, the terrain profile in125

our simulations is a cos4 mountain given by126

h (x ) =


hm
16

[
1 + cos

(
π (x−x0)

4a

)]4
,

��� (x−x0)4a

��� < 1
0,

��� (x−x0)4a

��� ≥ 1. (8)127

A comparison between the cos4mountain and theWitch of Agnesimountainwith the same crest height and half-width128

is shown in Fig. 2. The cos4mountain has the advantage that themountain height drops to zero at a finite distance from129

the crest. Because of this, all contributions to the surface pressure drag are confined to a small neighbourhood in the130

centre of the domain. In a constant N andU environment, the linear pressure drag across the cos4 mountain exceeds131

that across a Witch of Agnesi with same values of hm and a by a factor of 1.3. This factor was evaluated numerically132

from the linear analytic solution using Fourier transforms and confirmed with the time-dependent linearized meso12133

model.134

For our simulations, the model was run with a horizontal resolution of ∆x = 500 m and a vertical resolution of135

∆z = 50m. The domain was Lx = 600 km wide and 30 km tall; the large time step, which is used to integrate all terms136

not involved in the generation of acoustic modes, was 2 s, and the small time step, used for acoustic modes, was 2/3 s.137

The Robert-Asselin filter coefficient was set to 0.1. The terrain height was varied between simulations, but the terrain138

width was specified using a constant a = 20 km. The mountain was placed in the centre of the domain at x0 = 300139

km in all simulations. The outflow phase speed at the lateral boundaries was specified as c∗ = 35m/s at the upstream140

boundary and c∗ = 15m/s at the downstream boundary. These values were chosen to ensure that modes are directed141

out of the computational domain with appropriate Doppler-shifted phase speeds at both lateral boundaries. The142

upper boundary used the radiation condition specified in Durran (2010, p. 484), with perfect upward transmission143
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specified for horizontal wavelengths of 18, 72, and 144 km. Although the model is inviscid, it incorporates scale-144

selective fourth-derivative dissipation as well as a sub-grid-scale mixing parameterization. This parameterization was145

active for the nonlinear simulations but inactive for the linear simulations. The background wind field was ramped up146

from zero to its full value over a period of 4000 s. The model was run to a nondimensional time U0t/a = 43.6, where147

U0 is the surface wind speed, which was long enough for all non-breaking cases to achieve an approximate steady148

state.149

3 | UPSTREAM ENVIRONMENTS150

Four families of numerical experiments with differing upstream soundings were conducted in which the heights of the151

mountain and the tropopause were systematically varied. In the first pair of experiments, where the upstream wind152

speed is constant with height, the tropopause height varied between 0.3λL and 0.8λL at increments of 0.05λL , where153

λL = 2πU/NL is the vertical wavelength of a hydrostatic mountain wave in the lower layer (i.e., the troposphere). In154

the remaining experiments the height of the tropopause varied between 5 km and 15 km in 500 m increments. The155

mountain height hm was varied between 100 m and 1000 m in 100 m increments in all experiments. For the first pair156

of experiments, this corresponds to nondimensional mountain heights h̃m from 0.1 to 1.0 with increments of 0.1.157

3.1 | Experiment 1: Sharp Tropopause, NoWind Shear158

The upper-layer (the stratosphere) has a static stability of NU = 0.02 s−1, while the lower layer (the troposphere) has159

a static stability of NL = 0.01 s−1. The wind speed is constant throughout at U = 20 m/s.160

3.2 | Experiment 2: Gradual Transition at Tropopause161

The static stability profile is the same as in the two-layer soundings, except for the presence of a linear transition in162

N over a depth ∆z . For a tropopause height zT , the static stability profile is given by163

N (z ) =


NL , 0 < z < zT − ∆z

2

NU , z > zT +
∆z
2

NL+NU
2 +

(NU −NL ) (z−zT )
∆z , otherwise

(9)164

Two values of ∆z were considered, ∆z = 1 km and ∆z = 2 km. For our values of static stability and wind speed, these165

correspond to normalized transition layer depths of 0.08λL and 0.16λL , respectively.166

3.3 | Experiment 3: Sharp Tropopause, 10-30 m/s Shear167

The profiles ofU (z ) are representative of the mid-latitude westerlies, and the static-stability profile is identical to the168

two-layer structure in Experiment 1. Thewind speed increases from 10m/s at the surface to 30m/s at the tropopause169

and drops back to a value of 20 m/s in the stratosphere. An example Experiment-3 profile is shown in Fig. 3 for a case170

with the tropopause at zT = 10 km. The procedure used to generate U (z ) is presented in Appendix A.171
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3.4 | Experiment 4: Sharp Tropopause, 10-50 m/s Shear172

The Experiment-4 soundings are identical to those of Experiment 3, except that the wind speed increases from 10173

m/s to 50 m/s in the troposphere. The mid- to upper-stratospheric wind speed remains specified as a constant 20174

m/s.175

4 | RESULTS176

4.1 | Experiment 1: Sharp Tropopause, NoWind Shear177

The Experiment-1 soundings admit analytic linear hydrostatic steady-state solutions in wavenumber space, which can178

be easily transformed to physical space by an inverse Fourier transform. Letting lL and lU denote the constant Scorer179

parameter values below and above the tropopause, the Fourier-transformed vertical velocity field for wavenumber k ,180

ŵ (k , z ) , is given by181

ŵ (k , z ) =

a1 cos lLz + b1 sin lLz 0 < z < zT

a2 cos lU z + b2 sin lU z z > zT ,
(10)182

where183

a1 = Ui k ĥ, (11)184

b1 = −
sin (lLzT ) lLβ + cos (lLzT ) lU
sin (lLzT ) lU − cos (lLzT ) lLβ

a1 (12)185

a2 = a1 cos (lLzT ) + b1 sin (lLzT ) , (13)186

b2 = a2/β (14)187

β =


i , k < 0

−i , k ≥ 0
(15)188

189

Here ĥ (k ) is the Fourier transform of the mountain profile h (x ) . This is a simplification of the three-layer solution of190

Klemp and Lilly (1975).191

Using the polarization relation192

p̂ (k , z ) = − i ρ0U
k

∂ŵ

∂z
(16)

to derive the perturbation pressure p′ (x , z ) from Eq. 10, the normalized cross-mountain pressure drag193

D̃ l =
4

πρ0NLUh
2
m

∫ Lx

0
p′ (x , 0) ∂h

∂x
dx . (17)

is plotted in Fig. 4 for the cos4 mountain as a function of the tropopause height nondimensionalized by the vertical194

wavelength of a hydrostatic mountain wave in the troposphere such that z̃T = NLzT /(2πU ) . These analytic results195

may be compared to the drag obtained from a series of linearized meso12 simulations in which p′ is replaced in (17)196

by the steady-state surface pressure from the numerical simulations (orange points in Fig. 4). Although the linearized197
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meso12 model is nonhydrostatic, we compare directly to the hydrostatic analytic solution because the mountain is198

wide enough that the response is largely hydrostatic (a = 20 km, implying NLa/U = 10 and NU a/U = 20). The pressure199

drags obtained from linearizedmeso12 simulations are in close agreementwith the analytic solution, thereby providing200

a check on the correctness of our linearized time-dependent numerical model.201

The deviations from the linear uniform-atmosphere pressure drag for the finite-amplitude case are shown in202

Fig. 5a, in which the normalized drag is contoured as a function of the nondimensional mountain height h̃m = NLhm/U203

and z̃T . Letting p (x , z ) be the pressure computed with the nonlinear model at quasi-steady state, the normalized204

nonlinear pressure drag is205

D̃nl =
4

πρ0NLUh
2
m

∫ Lx

0
p [x , h (x ), t ] ∂h

∂x
dx , (18)

We define the quasi-steady-state pressure as that occurring at the midpoint of the first interval of duration ∆(Ut/a) =206

5 after nondimensional timeUt/a = 20 in which the drag varies by less than 5%of the average value within the interval.207

Note that the normalization factor πρ0NLUh2m/4 is the drag that would be obtained from many GWD parameteriza-208

tions, namely the drag generated by linear mountain waves launched by aWitch of Agnesi mountain in an atmosphere209

with uniform basic-state windU and static stability NL . No drag values are plotted in Fig. 5 for those combinations of210

hm and zT that do not achieve quasi-steady state. Breaking waves do not achieve quasi-steady state, and therefore211

our analysis is restricted to non-breaking waves.212

As iswell known (Klemp and Lilly, 1975) and evident in Fig. 4, in the limit of small h̃m the pressure drag ismaximized213

at z̃T = 0.5. Fig. 5a shows that, as h̃m increases, the maximum D̃nl occurs at progressively higher tropopause heights,214

a behaviour consistent with Durran (1992).2 For 0.15 ≤ h̃m ≤ 0.35, the maximum values of D̃nl exceed 2.5, suggesting215

that use of typical GWD expressions for the drag and momentum flux could be in error by that same factor.216

The normalization factor in (18) is for a single-layer atmosphere, not the corresponding linear two-layer problem.217

Therefore, to isolate the effects of finite amplitude, D̃nl /D̃ l is contoured as a function of h̃m and z̃T in Fig. 5b. Use of218

the ratio D̃nl /D̃ l also removes the factor of roughly 1.3 by which the drag over the cos4 mountain exceeds that for219

the reference Witch-of-Agnesi mountain. Linear theory closely approximates the 0.65 to 2.56 range over which the220

nonlinear pressure drag varies as the tropopause height changes, but the functional dependence on the tropopause221

height is different in the nonlinear case. Due to the shift of the maximum D̃nl to increasing tropopause heights as the222

h̃m increases, an amplification-deamplification couplet is present in the field of D̃nl /D̃ l . For values of z̃T above 0.5,223

D̃nl /D̃ l increases with increasing mountain height to its maximum when (h̃m , z̃T ) = (0.4, 0.65), while for z̃T < 0.5 it224

decreases as h̃m increases, reaching its minimum when (h̃m , z̃T ) = (0.6, 0.45).225

A case with strong finite-amplitude amplification (h̃m = 0.3, z̃T = 0.55) is illustrated in Fig. 6; vertical velocities226

and streamlines for the nonlinear solution are shown in Fig. 6b. Relative to the linear solution (Fig. 6a), the nonlinear227

solution (Fig. 6b) has a much stronger downdraft-updraft couplet over the lee slope, and the lee trough is sharper.228

These large-amplitude short-wavelength features in the lee trough are not present in the linear simulation because229

there is little direct forcing at such wavelengths by the wider topography.230

A deamplifying case is shown in Fig. 7. While the amplitude of the nonlinear simulation (Fig. 7a) is clearly reduced231

compared to the linear simulation (Fig. 7b), there are fewer structural differences between the linear and nonlinear232

solutions than there were in the amplifying case. In particular, the nonlinear solution in the deamplifying case lacks233

the short-wavelength perturbations in the lee of the ridge which develop in the nonlinear amplifying case (Fig. 6b).234

2In fact, all of our computed pressure drags are within 3% of those in Durran (1992) once they are adjusted to account for the cos4 shape of our topography.
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4.2 | Experiment 2: Gradual Transition at Tropopause235

As might be expected given the results of Teixeira and Argaín (2020), when there is a more gradual transition at the236

tropopause, the difference between the troposphere-stratosphere solutions and those for a single layer of constant237

N and U case is reduced. The normalized cross-mountain pressure drag D̃nl for cases with ∆z = 1 km, shown in238

Fig. 8a, maintains the general trend of a shift of the peak drag to higher tropopause heights as the mountain height239

is increased, but the magnitude of the finite-amplitude enhancement is reduced substantially from that apparent in240

Fig. 5a. The deviation of the nonlinear drag from the linear solution D̃nl /D̃ l (Fig. 8b) is also reduced relative to the241

sharp tropopause result in Fig. 5b, even after accounting for the changes induced in the linear solutions by the more242

gradual change in static stability at the tropopause.243

This lack of sensitivity to finite-amplitude processes is greater in the ∆z = 2 km case. The variation in D̃nl (Fig.244

8c) is smaller than in the ∆z = 1 km case, and there is only a modest trend for the maximum drag to occur at higher245

tropopause heights as the mountain height increases. The difference between the drag for the linear and nonlinear246

solutions is particularly small (Fig. 8d).247

4.3 | Experiment 3: Sharp Tropopause, 10-30 m/s Shear248

Whenmoderate forward shear (cross-mountainwind speed increasingwith height) and a sharp tropopause are present,249

the finite-amplitude enhancement of nonbreaking waves increases relative to the no-shear case. Normalized drag250

D̃nl for Experiment 3 is contoured as a function of the dimensional mountain and tropopause heights in Fig. 9a. The251

dimensional values of hm and zT are used in the shear flow cases for easy comparison with observations, and because252

there is no unique choice forU in the computation of the nondimensional forms. Nevertheless, to facilitate comparison253

with the previous results we still compute D̃ l and D̃nl , takingU to be the value at the surface. The range of tropopause254

heights is sufficiently broad that D̃nl exhibits a quasi-periodic structure in the tropopause height zT , with local maxima255

around 6.5 and 12 km. The values of D̃nl in these local maxima exhibit the trend seen previously in which there is a256

shift of the maximum drag to higher tropopause heights as the mountain height increases. The maximum D̃nl of 5.55257

occurs for hm = 700m, zT = 7 km and is over twice the 2.56 maximum in the no shear case.258

In contrast to Experiment 1, nonlinearity almost exclusively acts to increase the pressure drag (Fig. 9b). There are259

significant regions where D̃nl /D̃ l is greater than 2, with a maximum greater than 7. The de-amplification factor, on260

the other hand, is never less than 1/2. The maximum in D̃nl /D̃ l occurs in the case hm = 800m, zT = 8 km, which is261

particularly interesting because the linear solution is slightly deamplifying relative to the one-layer linear solution, but262

the nonlinear solution is strongly amplifying. The linear and nonlinear solutions for this case are compared in Fig. 10.263

Although they do not directly contribute to the drag, weak partially-trapped waves are present in the nonlinear (Fig.264

10b) simulation, while there are none present in the linear case (Fig. 10a). The generation of trapped waves due to265

short-wavelength forcing in the nonlinear lee wave has been previously well documented (Smith, 1976; Durran and266

Klemp, 1982).267

4.4 | Experiment 4: Sharp Tropopause, 10-50 m/s Shear268

When the shear is stronger andU (z ) increases from 10m/s at the surface to 50m/s at the tropopause, the increase in269

the local WKB vertical wavelength of hydrostatic mountain waves in the troposphere places the region of maximum270

amplification in both D̃nl and D̃nl /D̃ l at typical mid-latitude tropopause heights between 9 and 11 km (Fig. 11). The271

amplification is similar to that for the the weaker shear in Experiment 3, although it occurs at lower mountain heights.272
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In particular, D̃nl is greater than 4 when hm is just 300m and zT = 9 km. D̃nl reaches a maximum of 6.6 when273

hm = 700m and zT = 10 km, while D̃nl /D̃ l exceeds 9.5 when hm = 800m and zT = 11 km. Very strong nonlinear274

effects in nonbreaking mountain waves can develop at very small mountain heights when there is strong forward275

shear in the troposphere.276

As in Experiment 3, at most combinations of hm and zT , nonlinear effects amplify rather than damp the solution.277

Vertical velocities and streamlines from the strongly amplifying case hm = 800m and zT = 11 km are shown in Fig. 12.278

Leaky trapped waves are pronounced in the nonlinear solution, but as in the previous Experiment 3 with weaker shear,279

they are absent in the linear case. The vertical velocities and trapped wave amplitudes in the nonlinear Experiment-4280

simulation are both significantly stronger than in Experiment 3, despite both cases having equal values of hm .281

5 | DISCUSSION282

Neither the free-slip boundary condition at the surface, nor the matching conditions across the tropopause (requiring283

continuity of the pressure and the normal component of the velocity) are nonlinear in the unknown variables. Durran284

(1992) noted there is an effective reduction in the depth of the troposphere over finite-amplitude mountains, and285

found that tropopause heights giving the strongest drag can be adjusted to capture this finite-amplitude behaviour by286

generalizing the tuning criteria formaximumdrag in linear hydrostaticmountainwaves from zT = 0.5λL to zT −1.5hm =287

0.5λL . A similar adjustmentworkswell over thewider range ofmountain heights and tropopause elevations considered288

in our no-shear simulations, for which normalized drags are plotted in Fig. 5a along with a dashed line following the289

extrema in D̃nl given by zT − 1.17hm = 0.5λL (fit by eye; note that this is close to simply calculating the tropopause290

height as the distance above the mountain top, instead of the surrounding flat ground). Plotting D̃nl as a function of291

mountain height along this dashed line yields the almost-horizontal blue curve in Fig. 13, indicating that linear theory292

for the two-layer problem can give the correct drag, at least for the strongest events, after making a finite-amplitude293

adjustment to the depth of the troposphere.294

Similar attempts to apply two-layer linear theory via a simple adjustment of the effective depth of the troposphere295

did not, however, work well for the cases with vertical wind shear. Dashed lines indicating the approximate (hm , zT )296

values for which D̃nl achieves a local maximum appear in Figs. 9a and 11a; the normalized pressure drags along these297

curves are plotted as a function of hm in Fig. 13. These curves are not quasi-horizontal, but rather indicate that, in the298

wind-shear simulations, a significant amplification of D̃nl occurs beyond that which can be accounted for by simple299

reductions in the tropospheric depth above finite-amplitude mountains.300

The additional amplification of the drag in the wind-shear cases is associated with a significant nonlinear strength-301

ening of the lee-side trough, as may be illustrated by plotting the local contribution to the pressure drag p′ dh/dx at302

each point on the topography. Fig. 14 shows the behaviour of this local drag for three different environments: no-303

shear with zT = 8.16 km (z̃T = 0.65), winds increasing from 10 to 30 m s−1 with zT = 8 km, and winds increasing from304

10 to 50 m s−1 with zT = 11 km. Individual curves for mountain heights of 200, 400, 600, and 800 m are plotted for305

each environmental profile. In all three cases, the largest contribution to the pressure drag occurs along the lee slopes306

as a result of low surface pressures under the lee-side trough. The increase in the amplitude of this lee-side contribu-307

tion, as hm increases from 400 to 600 to 800 m, is much more pronounced in the two cases with wind shear. In those308

cases the rate at which the drag increases with hm is also much faster than the h2m scaling that would be expected309

from linear theory if the influence of finite mountain height on the effective tropospheric depth is neglected.310

Streamlines and vertical velocities for the linear and nonlinear hm = 800-m, 10-30m s−1 simulations are compared311

in Fig. 10. The dramatic intensification of the lee trough responsible for the increased local drag in Fig. 14b is clearly312
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apparent. Nonlinear wave interactions have substantially amplified short-wavelength contributions to thewave down-313

stream of the trough axis. At a height of z = 2 km, the half wavelength between the trough and the downstream ridge314

(325 ≤ x ≤ 340) is approximately 15 km. The terrain itself is too wide to directly force strong 30-km-wavelength315

perturbations—instead they are forced by the nonlinear wave dynamics. A similar situation is apparent for the 10-50316

m s−1 simulations shown in Fig. 12, for which the local drag contribution is plotted in Fig. 14c.317

Smith (1976) proposed that nonlinear flow over barrier can trigger a strong, short wavelength trough, thereby318

forcing larger-amplitude lee waves downstream than those which would be obtained from a linear calculation. Further319

evidence of such nonlinear amplification appears in Durran (1992, 2015), and in all the cases in these previous studies,320

the environmental profile supporting the trappedwaves has a two-layer structure with high static stability in the lower321

layer. In contrast to these previous studies, the decrease in the Scorer parameter with height responsible for partially322

trapping the waves in Figs. 10b and 12b is produced by the increase in U with height without any variation of the323

static stability within the troposphere.324

The vertical structures of the partially trapped waves supported by the environmental profiles of the Scorer pa-325

rameter in the shear-flow cases in Figs. 10 and 12were evaluated using the eigenvalue-eigenfunction solver described326

in Durran et al. (2015) as modified in Metz et al. (2020). Fig. 15a,c shows the vertical profile of the Scorer parameter327

squared for the 10-30 and 10-50 m s−1 shear flows, respectively, while Fig. 15b,d illustrates their modal structures328

by profiles of ŵ (z ) , defined such thatw (x , z ) = Re
(
ŵ (z )e i k x

)
. Also noted in panels b and d are the horizontal wave-329

lengths λx = 2π/k for each mode and their downstream decay rate Dλ , defined as the fraction of the wave amplitude330

lost over a distance λx . The upper-tropospheric layer throughout which l 2 < k 2, and the waves decay, is only a few331

kilometres deep (the layer just below the tropopause where the red curve lies to the left of the blue line in Fig. 15a,c),332

so it is not surprising that both modes decay rapidly downstream as they leak energy upward, losing roughly 38% and333

30% of their amplitude over one horizontal wavelength. The wavelengths and vertical structure of the downstream334

waves in the numerical simulations closely match those shown in Fig. 15.335

The extent to which these partially trapped modes contribute to the drag is unclear. The ability of trapped waves336

to exert a drag on the flow was demonstrated in the classic paper by Bretherton (1969), yet the trapped waves them-337

selves do not transport momentum vertically. Rather their interaction with the mountain produces a vertical diver-338

gence in the horizontally averaged momentum flux (Durran, 1995; Lott, 1998; Broad, 2002). The situation for these339

rapidly decaying waves that do transport momentum vertically (note the sinusoidal oscillations in the stratosphere340

in Fig. 15b,d) is more complex and needs further study. Nevertheless, the pronounced amplification of these waves341

clearly illustrates the consequences of the nonlinear scale interactions in the high-drag simulations with significant342

vertical shear.343

6 | CONCLUSIONS344

Our simulations have demonstrated that mountain waves encountering a sharp tropopause can experience large345

changes in amplitude and substantial deviations in momentum flux compared to that which would be present in an346

environment with constant values of N and U representative of the conditions near mountain-top level. Many GWD347

parameterizations will, therefore, be in error because they assume the low-level momentum flux is proportional to348

the constant-N -and-U drag in linear waves launched by the unblocked flow over the top of the ridge. Note in partic-349

ular that large deviations between constant-N -and-U GWD estimates and the actual momentum fluxes can occur at350

amplitudes below the wave-breaking threshold.351

Linear theory is often applied to the mountain wave problem usingWKB theory, but that theory assumes a slowly352
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varying background state that is violated at a sharp tropopause. Linear theory can alternatively be formulated for353

distinct atmospheric layers with matching conditions between the layers, including cases with linear variations inU (z )354

within each layer (Klemp and Lilly, 1975), thereby allowing a reasonably close match to observed sounding profiles.355

Nevertheless, our results suggest that the finite-amplitude solutions can differ dramatically from suchmulti-layer linear356

solutions, which is consistent with previous findings in the more limited case without vertical wind shear (Durran,357

1992). The differences between the linear and finite-amplitude results are large enough that there would be little358

reason to try to incorporate complex multi-layer linear models with vertical wind shear in GWD parameterizations.359

In the simplest two-layer case with no vertical wind shear, linear theory accurately predicts the range over which360

the drag varies in response to changes in the tropopause height, but the functional dependence on zT is incorrect.361

Finite-amplitude effects tend to shift the extrema in the drag to higher tropopause heights as the mountain height362

increases, decreasing the effective depth of the troposphere (Fig. 5). Similar to Durran (1992), the optimal tropopause363

height for maximum drag could be estimated by empirically correcting the condition from linear theory through the364

inclusion of a term proportional to the mountain height. We also demonstrated that, at least for the strongest cases,365

good estimates of the finite-amplitude drag could also be obtained from linear theory using the same empirical cor-366

rection.367

The sensitivity of the surface pressure drag to finite-amplitude effects increases when the cross-mountain winds368

increase with height. In this case, multi-layer linear theory does not accurately predict the range of possible pressure369

drags. For example, in the 10-30 m/s shear case, D̃ l ranges from approximately 0.5 to 3.0, while D̃nl varies from 0.5370

to 4.8. In the 10-50 m/s shear case, strong nonlinear amplification relative to typical GWD estimates can occur over371

mountains that are just 250 m high (Fig. 11a). Nonlinear dynamics are important in the high-drag cases with wind372

shear, and it is not possible to obtain good agreement with linear theory by simply compensating for changes in the373

effective tropospheric depth above finite-height topography. Leaky trappedwaves appear in the high-drag simulations374

with significantwind shear, triggered by short-wavelength structures in the lee-trough immediately downstreamof the375

mountain. Thesewavesmatch the vertical-mode structure of the leakymodes supported by the oncoming background376

flow as computed using linear theory. The strong nonlinear response in vertically sheared environments is qualitatively377

similar to that previously documented in cases where a significant decrease in the Scorer parameter with height is378

produced, not by increases in wind speed, but by decreases in the upper tropospheric static stability (Durran, 1986).379

The influence of these leaky waves on the drag, and the influence of the tropopause on these leaky waves, are topics380

for further study.381

An important additional influence of vertical shear, due to the change in the vertical wavelength from the varying382

wind speed, is to modulate the level at which the drag is most sensitive to partial reflections from the tropopause. The383

dry Brunt-Väisälä frequency, averaged over the full depth of the troposphere, is usually near 0.01 s−1. Given an NL384

of 0.01 s−1, an environmental wind profile in which U (z ) increases linearly from 10 m/s near the surface to 50 m/s385

at the tropopause will be conducive to very strong nonlinear amplification of the mountain-wave drag when zT has a386

typical mid-latitude value in the range between 8 and 11 km.387

We have focused on the impact of partial back reflections of vertically propagating waves at the tropopause,388

and on the influence of strong vertical wind shear, because they are ubiquitous mid-latitude features (Birner, 2006).389

Other sharp changes in atmospheric structure, such as the presence of an inversion layer near mountain top-level, are390

also known to have a strong influence on the amplitude of mountain waves (Durran, 1986, Figs. 10-13), and these391

influences extend into the wave-breaking regime. A thorough analysis in the influence of elevated inversions and the392

behaviour of breaking mountain waves in environments with wind shear and static-stability layering is beyond the393

scope of this paper. Nevertheless, our results demonstrate that finite-amplitude effects in mountain waves cannot be394

reliably accounted for without numerically computing the actual wave response. As a consequence, the associated395



Metz and Durran 13

gravity-wave drag is not easily parameterized, and errors due to improper representation of GWD in global weather396

and climate models are likely to remain nontrivial unless the grid spacing becomes small enough to resolve the waves.397

The current efforts to develop and migrate to global cloud-resolving models could provide the required numerical398

resolution and thereby promise to improve representation of orographic wave drag (Satoh et al., 2019).399

A | GENERATION OF SHEAR SOUNDINGS400

The shear soundings are constructed differently in the troposphere than in the stratosphere. In the troposphere, we401

specify N = 0.01 s−1 and linear shear402

U (z ) = UT − 10m/s
zT

z + 10m/s, (19)

where zT is the height of the tropopause andUT is the wind speed at the tropopause. In the stratosphere, we employ403

a more complex procedure designed to obtain a smooth profile that eventually transitions to a constant value of404

US = 20m/s. Note that the definition of the Scorer parameter (Eq. 2) can be rearranged as a second order nonlinear405

ordinary differential equation for the basic-state wind speed U :406

d 2U

dz 2
− N

2

U
+U l 2 = 0. (20)

This equation can be solved numerically as an “initial value problem” in the height variable z , for which purpose we407

use the SciPy odeint function. Defining ζ = z − zT , we specifyU (ζ = 0) = UT andU ′ (ζ = 0) = (UT − 10m/s) /zT . In408

addition, we specify a constant value for the Scorer parameter, l = 0.02/Um m−1, where Um = (UT + 20) /2 is chosen409

as the average of the wind speed at the tropopause and the constant upper-stratospheric value.410

Specifying N 2 will completely specify the profile of U . However, in general, a constant value of N in the strato-411

sphere will result in large sinusoidal variations in U with height. To prevent this, we still specify a constant value of412

N = 0.02 s−1, but we transition from the oscillatory wind profile to a constantU profile by fitting an elliptic wind profile413

in between. The wind profile in the elliptic transition region is given by414

Ue (z ) = U0 +

√√√
a2

[
1 − (z − z0)

2

b2

]
. (21)

This equation has four free parameters: theU - and z -coordinates of the centre of the ellipseU0 and z0 and the length415

of the semi-major and semi-minor axes a and b . We in turn specify four matching conditions, two at each boundary of416

the elliptic transition region. The lower boundary is specified as being at the first point z = zi above the tropopause417

where the curvature of the wind profile is zero, while the upper boundary is specified to be ∆z = 3 km above the lower418

boundary. At both of these points we require that both the wind profile and the first derivative be continuous. The419

resulting equations for each parameter are given by420

U0 =
U (zi )U ′ (zi ) ∆z +U (zi )2 −U 2S
U ′ (zi ) ∆z + 2 [U (zi ) −US ]

, (22)

421

a2 = (US −U0)2 , and (23)
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b2 =
(U0 −US )2 ∆z 2

2U (zi )U0 −U (zi )2 − 2USU0 +U 2S
, (24)

whereUS = 20ms−1 is the constantwind speed above the transition region,∆z = 3 km is the thickness of the transition422

region, andU (zi ) andU ′ (zi ) is the wind speed and first derivative of the wind speed at the lower boundary zi of the423

transition region. An example result from this procedure is shown in Fig. 16.424

B | COMPUTATION OF LINEAR STREAMLINES425

Linear solutions are obtained by assuming all perturbations about a reference state are arbitrarily small. Under this426

small-amplitude assumption, the vertical excursions of streamlines about a horizontal reference line would be in-427

finitesimal, and they would simply appear as horizontal lines. The amplitude of linear solutions is scaled up when428

approximating the flow over a finite-amplitude mountain, but this leads to an inconsistency between two possible429

ways to display the streamlines.430

Streamlines in the 2D x -z plane satisfy431

dz

dx
=
w

u
. (25)432

In the standard finite-amplitude computation, the velocities on the right side of the preceding are evaluated at each433

point along the streamline, in which case the (x , z ) coordinates of a streamline originating at the point (x0, z0) may434

be computed as a function of the parameter s using435

x (s) = x0 +
∫ s

0
u (x (α) , z (α)) dα (26)436

437

z (s) = z0 +
∫ s

0
w (x (α) , z (α)) dα . (27)438

Streamlines computed in this manner are plotted in red in Fig. 17 for one-layer constant-N -and-U linear flow over a439

Witch-of-Agnesi mountain. Note that the surface streamline does not follow the mountain profile (shown in blue). For440

steady adiabatic flow, this procedure generates lines identical to those that would be obtained by applying a standard441

contouring algorithm to the potential temperature field. As with streamlines, if isentropes are plotted in this manner,442

they will not coincide with the mountain profile.443

To obtain a streamline that follows the mountain, it is necessary to return to the small-amplitude assumption444

by neglecting the functional dependence of u and w on the amplitude of the streamline displacement. This requires445

replacing z (α) in Eq. 26 and 27 with z0. Consistent with the linearization assumption, u must be approximated by the446

basic-state horizontal velocity U . The coordinates (x̃ , ỹ ) of such streamlines satisfy447

x̃ (s) = x0 +U (z0)s (28)448

449

z̃ (s) = z0 +
∫ s

x0

w [x̃ (α), z0 ] dα . (29)450
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Streamlines plotted using Eqs. 28 and 29 are shown in black in Fig. 17. The surface streamline perfectly follows451

the mountain contour, and is identical to the blue curve. Over the mountain, the magnitudes of the slopes of the452

black streamlines are similar around z = 2.3 and 4.6 km, but they are opposite in sign. In contrast, the red streamlines453

are much steeper than the black streamlines at 4.6 km, and less steep at 2.3 km. In this case whereU is constant with454

height, the red lines are actually streamlines for the solution to Long’s equation (Eq. 1) for flow over a mountain whose profile455

matches the lowest red streamline in Fig. 17.456

Wehave used Eqs. 28 and 29 in all plots of linear solutions in this paper because in most respects this choicemore457

faithfully represents the linear solution. But there is one drawback to this approach: when the amplitude is sufficiently458

large and the streamline spacing is sufficiently tight, sets of (x̃ , z̃ ) streamlines can cross. Such crossing streamlines459

are a manifestation of the inconsistency resulting from computing solutions under an assumption of infinitesimal460

amplitude and then scaling up the amplitude of the result.461
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F IGURE 1 Comparison of streamlines of the one-layer linear (black) and nonlinear (red) solutions for a Witch of
Agnesi mountain with a = 10 km and Nhm/U = 0.6. Airflow is left to right; the mountain profile is shown in blue.
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F IGURE 2 Comparison of a cos4 (blue) and a Witch of Agnesi (orange) profile with the same values of hm and a .
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a) b)

F IGURE 3 Vertical profiles of (a) Brunt-Väisälä frequency N and (b) horizontal wind speed U for an Experiment-3
case with the tropopause height set at 10 km.
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F IGURE 4 Cross-mountain pressure drag D̃ l as a function of nondimensional tropopause height z̃T for
Experiment 1 computed by the semi-analytic method (blue line) and using the linearized meso12 model run to
steady state (orange points).
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a) b)

F IGURE 5 (a) Normalized cross-mountain pressure drag D̃nl for the Experiment-1 simulations contoured as a
function of nondimensional mountain and tropopause heights, and (b) Amplification of the nonlinear drag relative to
that for the corresponding linear solution. The linear solution is plotted at a mountain height of 0.0. The thick black
line indicates a normalized pressure drag or amplification of 1.0. White areas are plotted for those values of h̃m and
z̃T that produce breaking mountain waves. The black dashed line, satisfying z̃T = 1.17h̃m + 0.5, is an empirical fix to
the set of (h̃m , z̃T ) along which D̃nl is maximized and is discussed in connection with Fig. 13.
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a) b)

F IGURE 6 Vertical velocity (colour fill) and streamlines (black lines) from the (a) linear and (b) nonlinear meso12
simulations of an Experiment-1 case with nonlinear amplification in which z̃T = 0.55λL and h̃m = 0.3. The grey line
indicates the tropopause, and grey stippling indicates the stratosphere.



26 Metz and Durran

a) b)

F IGURE 7 As in Fig. 6, but for a case with nonlinear deamplification in which z̃T = 0.45λL and h̃m = 0.6.
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a)

c)

b)

d)

F IGURE 8 Normalized drag D̃nl as in Fig. 5a for the Experiment-2 simulations with (a) ∆z = 1 km and (c)
∆z = 2 km. Amplification of the drag relative to the linear solution D̃nl /D̃ l as in Fig. 5b for cases with (b) ∆z = 1 km
and (d) ∆z = 2 km.
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a) b)

F IGURE 9 (a) Normalized drag D̃nl and amplification of the drag relative to the linear solution D̃nl /D̃ l , as in Fig. 5,
for the Experiment-3 simulations.
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a) b)

F IGURE 10 As in Fig. 6, but for the 10 m/s to 30 m/s shear sounding with a tropopause height of zT = 8 km and
a mountain height of hm = 800m.
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a) b)

F IGURE 11 (a) Normalized drag D̃nl and amplification of the drag relative to the linear solution D̃nl /D̃ l , as in
Fig. 5, for the Experiment-3 simulations.
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a) b)

F IGURE 12 As in Fig. 6, but for Experiment 4 with hm = 800m and zT = 11 km.
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F IGURE 13 Normalized pressure drag as a function of mountain height along the dashed lines in Figs. 5a, 9a and
11a for the no-shear case (blue), the lower-level/upper-level maximum in the 10-30 m/s case (green/orange), and for
the 10-50 m/s case (red).
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a)

c)

b)

F IGURE 14 Local pressure drag for the (a) no-shear case, (b) 10-30 m/s shear case, and (c) 10-50 m/s shear case.
Blue, orange, green, and red lines are for mountain heights of 200 m, 400 m, 600 m, and 800 m, respectively.
Tropopause heights are z̃T = 0.65 for the no-shear case and zT = 8 km and zT = 11 km for the 10-30 m/s and 10-50
m/s shear cases, respectively. For reference, the mountain profile is plotted as a black dashed line.
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F IGURE 15 Vertical profiles of (a, c) Scorer parameter l squared (red) and (b, d) real part of the
Fourier-transformed vertical velocity ŵ (z ) for the trapped wave mode supported by the (a, b) 10-30 m/s shear case
with a tropopause height of 8 km and (c, d) 10-50 m/s shear case with a tropopause height of 11 km. The horizontal
wavenumber k of this mode is plotted as the blue vertical line in (a, c). The grey shading in (b, d) indicates the interval
[− |ŵ | , |ŵ | ], where |ŵ | is the magnitude of ŵ . The parameters λx and Dλ indicate the horizontal wavelength and
downstream decay per wavelength, respectively.
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F IGURE 16 Demonstration of the construction of a wind profile in the stratosphere. The blue curve indicates
the solution for a constant Scorer parameter l . The red dot indicates the first point with zero curvature above the
tropopause, while the green curve indicates the ellipse used to transition between the constant-l and constant-U
profiles. The resulting wind profile is shown in black.
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F IGURE 17 Comparison between two methods of plotting linear streamlines in flow from left to right over a
Witch of Agnesi mountain: red lines use Eqs. 26 and 27; black lines use Eqs. 28 and 29. The mountain profile is
shown in blue and coincides with the lowest black streamline.


