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The sensitivity of ensemble simulations of deep convective events in the southeast-

ern United States to initial-condition (IC) errors is examined by imposing idealized

moisture perturbations at small and large scales. Four severe weather events are

considered, ranging from a springtime frontal system to convection driven almost

exclusively by daytime heating. Events with strong synoptic-scale forcing were

insensitive to the scale of IC errors, but weakly forced events exhibited greater sen-

sitivity to small-scale than large-scale IC errors. Additional ensemble simulations

of idealized convective systems suggest that the greater sensitivity to small-scale IC

errors of the weakly forced cases arises from their higher sensitivity to the strength

and location of the first convective elements. Ensemble spread and predictability

are characterized by two measures: the ratio of the perturbation kinetic energy (KE)

about the ensemble mean to the background KE and the neighborhood-based frac-

tions skill score (FSS) of hourly precipitation with respect to that in an unperturbed

reference simulation. For simulations of both observed events and idealized convec-

tive systems, the FSS appears to be a more discriminating indicator of differences in

predictability between different convective events.

KEYWORDS

convective systems, error growth, initial conditions, numerical weather prediction,

predictability, severe weather

1 INTRODUCTION

The accurate prediction and advance warning of high-impact

severe weather events is vital to protecting lives and property.

As more powerful computational resources and better mete-

orological data have enabled numerical weather prediction at

increasingly finer resolution, recent attention has focused on

the predictability of mesoscale (5–400 km) features, includ-

ing isolated and organized convection. The seminal work of

Lorenz (1969) established the so-called “butterfly” effect,

whereby the intrinsic limits on weather forecasts arise from

the upscale growth of errors beginning at very small scales,

possibly as small as the size of a butterfly. Many studies

have shown that errors that first become detectable at small

convective scales are eventually responsible for the loss of

predictability on much larger scales (for example, Zhang

et al., 2003; 2006; 2007; Selz and Craig, 2014; Sun and

Zhang, 2016). Recent work has demonstrated, however, that

relatively small initial-condition (IC) errors on much larger

scales of (100) km can propagate rapidly downscale and

subsequently reduce predictability in a similar manner to

that produced by relatively large errors in the conditions on

small scales, thereby making the identification of the actual

initial scale of errors responsible for forecast degradation

ambiguous (Durran et al., 2013; Durran and Gingrich, 2014;

Durran and Weyn, 2016; Weyn and Durran, 2017). In partic-

ular, Weyn and Durran (2017, hereafter WD17) showed that

intrinsic predictability in simulations of idealized mesoscale

convective systems (MCSs) was independent of the hori-

zontal scale of equal-absolute-amplitude IC errors across a

range of different MCS types. This study seeks to answer the

question of whether this scale independence is also present in
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simulations of observed high-impact convective events using

a full-physics numerical weather prediction model.

Evaluations of the performance of numerical simulations

of severe convection have shown significant variations in the

predictability of various convective events, making univer-

sal characterizations of forecast uncertainty difficult. Done

et al. (2012) and Flack et al. (2018) showed that convec-

tion in “non-equilibrium” convective conditions (Keil et al.,
2014), that is, under the influence of fronts and other local-

ized synoptic features, exhibited better predictability in a

case study than convection in “quasi-equilibrium” conditions

with a fairly uniform large-scale environment. Similarly, Sur-

cel et al. (2016) showed that diurnally forced convection

under weak synoptic forcing exhibited lower predictability

and higher sensitivity to initial conditions than widespread

convection under strong synoptic forcing. On the other hand,

Duda and Gallus (2013) examined a wide range of over 30

convective-initiation cases and classified each by the magni-

tude of synoptic-scale forcing diagnostics, including 700 hPa

omega, 200 hPa divergence, and quasi-geostrophic forcing

terms. While they found variability in forecast skill among

the cases, they did not find a statistically significant relation-

ship between the synoptic-scale forcing strength and the rate

of error growth.

Understanding how different atmospheric states respond

to perturbations on different scales is vital for improving

data assimilation. Johnson et al. (2014) showed that syn-

optically forced precipitation events show little response to

small-scale IC perturbations, while precipitation events con-

trolled by the upscale evolution of convective elements into

an MCS show as much sensitivity to small-scale IC pertur-

bations as to large-scale IC perturbations and variations in

model physics. The importance of small-scale perturbations

in upscale MCS development was also noted by Nielsen and

Schumacher (2016). Potvin et al. (2017) showed that simula-

tions of supercells exhibit little sensitivity to the resolution of

initial conditions, and therefore little sensitivity to fine-scale

initial errors; Johnson and Wang (2016) found that assim-

ilating small-scale IC data produced modest improvements

to 5 hr ensemble forecasts of mesoscale convection. These

examples demonstrate that the impact of small-scale data

assimilation on the predictability of mesoscale convective

events, while generally positive, is not consistently beneficial.

The rate of error growth may also vary from case to case,

depending on how predictability is quantified. Many differ-

ent methods have recently been proposed to analyze fore-

cast skill and predictability (for example, Roberts and Lean,

2008; Fang and Kuo, 2015; Surcel et al., 2015; Dey et al.,
2016). Spectral decomposition of kinetic energy (described

further in section 4) has long been used to study the struc-

ture of background atmospheric flows in both observations

and models (for example, Nastrom and Gage, 1985; Ska-

marock, 2004; Waite and Snyder, 2013; Skamarock et al.,
2014), and spectra of error kinetic energy have been used to

evaluate the scale dependence of errors (for example, Lorenz,

1969; Leith, 1971; Zhang et al., 2003; Mapes et al., 2008;

Durran et al., 2013; Durran and Gingrich, 2014; Durran and

Weyn, 2016; Sun and Zhang, 2016, WD17). This method has

the advantage of evaluating perturbation growth characteris-

tics simultaneously at all scales and across the entire model

domain, providing a clear picture of the evolution of errors

as a function of scale (Surcel et al., 2015; 2016). However,

spectral decomposition is not well-suited for evaluating the

skill of an ensemble forecast, especially when considering the

location or intensity of severe-weather impacts including pre-

cipitation. To characterize forecast skill more thoroughly, we

also use the neighborhood-based fractions skill score, or FSS

(Roberts and Lean, 2008), described further in section 5. The

FSS measures how well a model captures the location and

frequency of precipitation events exceeding a certain defined

threshold, and can be evaluated for neighborhoods of different

sizes to measure performance on different spatial scales.

The main goals of this article are twofold. First, we use

idealized, monochromatic two-dimensional IC perturbations

to examine the growth of small- and large-scale errors in

simulations of four widely varying high-impact convective

events in the southeastern United States. These perturbation

structures are at specific long and short wavelengths, as in

Durran and Weyn (2016) and WD17. WD17 showed that

equal absolute amplitude small- and large-scale initial errors

produced nearly identical spectra of error kinetic energy at

lead times of 4–5 hr in three idealized simulations of squall

lines formed under widely varying amounts of vertical wind

shear. We apply this methodology to real-data cases simu-

lated with a numerical weather prediction model to examine

the case-to-case variability in the growth of both small- and

large-scale IC errors, although we do not examine the model’s

ability to make accurate forecasts. Second, we compare the

spectral decomposition method and the FSS to examine what

each metric contributes to the assessment of predictability in

both idealized and observed cases. As will be shown, the FSS

complements the spectral methods by evaluating the skill of

the ensemble simulations in representing significant weather.

The remainder of this article is organized as follows. The

model configuration is presented in section 2, while details

of the four simulated real-world events are presented in

section 3. Section 4 analyzes the predictability of these events

in terms of the degree of saturation of the ensemble mean

perturbation kinetic energy, while section 5 presents an FSS

analysis of the predictability of these simulations, as well as

FSS for the more idealized cases considered in WD17. Lastly,

conclusions are provided in section 6.

2 ENSEMBLE DESIGN AND NUMERICAL
PARAMETERS

The model used is the Weather Research and Forecasting

(WRF) model version 3.7.1. Individual simulations are per-

formed on a domain covering much of the contiguous United
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States at a horizontal resolution of 2.5 km and run for 24 hr

using WRF’s adaptive time-stepping. There are 60 vertical

levels with a model top at 50 hPa. Model physics include

Thompson microphysics (Thompson et al., 2008), the Noah

land surface model (Tewari et al., 2004), the Yonsei Uni-

versity (YSU) planetary boundary-layer scheme (Hong et
al., 2006), Dudhia short-wave radiation (Dudhia, 1989), and

Rapid Radiative Transfer Model (RRTM) long-wave radia-

tion (Mlawer et al., 1997). Cumulus parametrization is turned

off. The model initialization and lateral boundary conditions

are provided by one-degree Global Forecast System (GFS)

analysis data.1 As described further in the next section, four

different cases are considered. Although historical data are

used to initialize and provide boundary conditions for the sim-

ulations, it is not the purpose of this article to evaluate the

ability of the model to reproduce observed weather.

Two ensembles are generated for each event by perturbing

the water-vapor field in a manner similar to that in WD17.

Each ensemble consists of one unperturbed control member

and six perturbed members.2 To allow for model spin-up, the

perturbations are added into the control simulation at 6 hr. We

will refer to simulation times ts, defined such that the simula-

tions are initialized at ts = −6 hr and perturbations are intro-

duced at ts = 0. The water-vapor perturbations are of the form

q′
v = a(x, y)e−z∕H sin

[
2𝜋

( x
L
− 𝜙x

)]
sin

[
2𝜋

( y
L
− 𝜙y

)]
,

(1)

where a is the perturbation amplitude, H is the e-folding

height scale, and L is the horizontal perturbation scale.

The phases 𝜙x and 𝜙y (0 ≤ 𝜙 < 2𝜋) are generated ran-

domly for each ensemble member, and hence the differences

between ensemble members arise through the difference

in phase between the perturbations and the location of

convective activity. Each pair of ensembles consists of an

“S” ensemble with L = 20 km and an “L” ensemble with

L = 200 km to simulate the effects of small- and large-scale

IC errors, respectively. (Note that the true wavelengths of

these two-dimensional perturbations are 2−1∕2L or about 14.1

and 141 km, respectively.) The perturbation vertical scale

height is H = 1 km. Because there are large spatial variations

in background water vapor in the real-data cases, using a

constant perturbation amplitude (as in WD17) would intro-

duce much larger relative errors where the water vapor is

low. We therefore define a(x, y) to be 1% of the background

water vapor. To avoid spurious supersaturation, no perturba-

tion is added in regions where the perturbation would cause

the water vapor to exceed the saturation water vapor. Spectral

analysis of the IC water-vapor perturbation field confirmed

that, despite the spatial dependence of a(x, y), the perturbation

remained strongly peaked at wavelengths of 14 or 141 km.3

1ftp://nomads.ncdc.noaa.gov/GFS/analysis_only
2The number of ensemble members was limited by the computational cost of

each simulation.
3Perturbations at wavelengths of L∕2, the next most significant signal in the

spectrum, were more than three orders of magnitude weaker than the peak.

The scale of the short-wavelength perturbations was cho-

sen as L = 8Δx = 20 km, because this is slightly longer than

the nominal longest wavelength (7Δx) that is significantly

dampened by numerical dissipation (Skamarock, 2004).4 The

choice of 200 km for the large-scale perturbations ensures an

order of magnitude separation between the “S” and “L” scales.

In addition, 200 km is near the large-scale end of the range of

mesoscale wavelengths over which the average atmospheric

KE spectrum exhibits a k−5∕3 slope.

When using a limited-area model with prescribed bound-

ary conditions, the dilution of IC perturbations due to forcing

from the boundaries is a challenge (Vukicevic and Errico,

1990). Hohenegger and Schär (2007) found that fixed lateral

boundaries dilute IC perturbations in convective-permitting

limited-area simulations within about 11 hr on a domain

roughly 800 km in size. In our simulations, we avoid the

influence of the lateral boundary conditions altogether by

focusing all of the analysis of perturbation growth on a

limited 1500 km × 1500 km subdomain of the complete

WRF model domain. To verify that the boundaries did

not influence the subdomain, we used the NOAA Hys-

plit trajectory model5 to calculate backward trajectories

ending within the subdomain at all of the model heights

considered in the analysis (not shown). The choice of

WRF model domain was made such that no trajectories

originated from outside the domain at any time prior to

ts = 18 hr, 6 hr after the end of our analysis. Therefore,

we are confident that the ensemble error growth is not

influenced significantly by the prescribed lateral boundary

conditions.

3 OBSERVED CASES AND THEIR
SYNOPTIC-SCALE FORCING

3.1 Four severe convective events

In the following discussion of the convective events, the

reader is referred to Figure 1c for the locations of US states,

marked as state abbreviations. For reference, these state

abbreviations are included in the text below in parentheses.

3.1.1 April 29, 2017 (April 2017)
The April 2017 case has the strongest synoptic-scale forcing

among the four cases. The synoptic map in Figure 1a shows

that there was a deep upper-level trough extending south to

Mexico with associated synoptic-scale ascent ahead of the

trough and descent behind at the model initialization time

of 1800 UTC on April 29, 2017. The jet exit region gener-

ated significant localized ascent over a region from Oklahoma

(OK) and Arkansas (AR) northeast to northern Illinois (IL).

4WD17 also chose a scale of 8Δx for their short-wavelength perturbations,

which, becauseΔx = 1 km in their smaller numerical domain, gave L = 8 km.
5https://ready.arl.noaa.gov/HYSPLIT.php

ftp://nomads.ncdc.noaa.gov/GFS/analysis_only
https://ready.arl.noaa.gov/HYSPLIT.php
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FIGURE 1 Synoptic maps for each case at ts = −6 hr, corresponding to (a) 1800 UTC April 29, 2017, (b) 1200 UTC May 24, 2015, (c) 1200 UTC June 17,

2016, and (d) 1200 UTC June 24, 2015, generated from the Global Forecast System (GFS) analysis data used as model initial conditions. Dashed green lines

are 500 hPa heights (dkm), solid black lines are sea-level pressure (hPa), and colored shading is negative 500 hPa omega (Pa/s, red is ascent). Surface pressure

highs and lows are also indicated. Abbreviations for US states are included in (c)

An associated 999 hPa surface low was centered ahead of the

upper-level trough at the Nebraska (NE)–South Dakota (SD)

border and was undergoing rapid development. Vigorous con-

vection was occurring at this time along a cold front spanning

from central Texas (TX) to Missouri (MO) and further north,

and a subsequent, albeit weaker, region of convective activity

developed in association with the synoptic-scale ascent from

west Texas (TX) north to Colorado (CO). Twelve hours later

(ts = 6 in the simulations), a line of very strong convection ran

through eastern Texas (TX) to Arkansas (AR), as shown in the

model synthetic reflectivity plot in Figure 2a. The evolution

of the model’s synthetic reflectivity within the analysis sub-

domain, presented at higher resolution in Figure 3a,c,e, shows

that, although it weakened slightly, the main convective line

remained quite distinct at ts = 12 hr. This springtime severe

weather system resulted in 364 wind and hail reports and 59

tornado reports from 1200 UTC on April 29 to 1200 UTC

on May 1, according to the Storm Prediction Center’s (SPC)

filtered storm reports.6

6https://www.ncdc.noaa.gov/stormevents/

3.1.2 May 24, 2015 (May 2015)
A weak surface frontal system associated with a broad

upper-level trough initiated convection in an unstable environ-

ment over Oklahoma (OK) and Texas (TX) as much as 24 hr

before the start of the next simulation at 1200 UTC on May

24, 2015. A broad line of convection extended from Mexico

to Missouri (MO) when the control simulation was initial-

ized, although the model needed to spin those features up. An

upper-level trough and weak surface features, along with lift

associated with the trough, are pronounced in Figure 1b. The

main squall line produced outflow boundaries and surface

troughs initiating a sustained line of convection that gradu-

ally progressed eastward throughout the model simulation,

and was located over a broad area from Missouri (MO) to

Louisiana (LA) by ts = 6 hr (Figure 2b). The frontal zone,

although weaker than in the previous case, produced several

north–south oriented convective lines over the affected area,

as shown in Figure 2b. The evolution and eastward propa-

gation of these lines is shown by the model-simulated radar

reflectivity in Figure 3b,d,f. Despite weaker frontal forcing,

the thunderstorms, along with some supercells triggered by

https://www.ncdc.noaa.gov/stormevents/
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FIGURE 2 Model-generated synthetic reflectivity for the control members at ts = 6 hr, for (a) April 2017, (b) May 2015, (c) June 2016, and (d) June 2015

cases. The plotted domain is the entire model domain, and the blue boxes denote the subdomain where further analysis is performed (see text)

the surface features in eastern Colorado (CO), produced sig-

nificant severe weather, with the SPC recording 92 filtered

wind and hail reports and 32 tornado reports.

3.1.3 June 17, 2016 (June 2016)
The initial upper-level flow at 1200 UTC on June 17, 2016

consisted of a pronounced ridge over the central United States

and a deep, almost west-east-oriented trough over the eastern

US, as shown in Figure 1c. Associated with a weak surface

low located offshore of North Carolina (NC) was a very weak

front extending westward through Arkansas (AR). Diurnal

forcing triggered strong thunderstorms in the unstable, warm

air mass south of the weak frontal boundary beginning at

around ts = −2 hr. Despite relatively weak forcing along the

air-mass boundary, these storms organized into a remarkably

continuous and strong squall line, as shown in Figure 2c. Out-

flow uplift sustained the squall line as it gradually progressed

southward (see Figure 4a,c,e), but it eventually weakened

after sunset and collapsed into a smaller MCS. The squall

line produced 328 filtered wind and hail reports accord-

ing to the SPC, the vast majority being strong straight-line

winds.

3.1.4 June 24, 2015 (June 2015)
At the time of model initialization at 1200 UTC on June

24, 2015, the upper-level features were characterized primar-

ily by nearly zonal 500 hPa heights with little synoptic-scale

forcing (Figure 1d). Around ts = 0 hr, the convection of pri-

mary interest was triggered by diurnal forcing along a weak

surface trough in the southeast states, primarily in Missis-

sippi (MS) and Alabama (AL). As shown in Figure 4b,d,f,

these storms aggregated into one large but disorganized MCS,

showing significant development by ts = 6 (Figure 2d). By

the early morning hours of 25 June (ts = 12 hr), the system

had weakened greatly. Despite being the smallest and weak-

est convective system among the four cases considered, the

SPC logged 138 filtered wind and hail reports in the southeast

United States for 24 June.
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FIGURE 3 Model-generated synthetic reflectivity for the control members at ts equal to (a,b) 1 hr, (c,d) 6 hr, and (e,f) 12 hr, for (a,c,e) the April 2017 case

and (b,d,f) the May 2015 case. Only the subdomains shown in Figure 2 are plotted
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FIGURE 4 As Figure 3, but for (a,c,e) the June 2016 case and (b,d,f) the June 2015 case
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TABLE 1 Synoptic-scale forcing diagnostics for the four events computed at the times shown in Figure 1. The numbers in parentheses are normalized
values in which each forcing is divided by that for the strongest April 2017 event; Af is the average of the normalized forcings for each event

700 hPa 𝝎 Surface frontogenesis (≥ 25 pct’ile) 200 hPa divergence 500 hPa Q-vector convergence (≥ 75 pct’ile)

Pa/s 10−9 K m−1 s−1 10−6 s−1 10−9 Pa m−2 s−1 Af

April 2017 −0.36 (1.0) 2.2 (1.0) 38.9 (1.0) 0.47 (1.0) 1.0

May 2015 −0.18 (0.50) 0.45 (0.20) 5.3 (0.14) 0.28 (0.60) 0.36

June 2016 0.009 (−0.02) 0.25 (0.11) −4.4 (−0.11) 0.35 (0.74) 0.18

June 2015 0.074 (−0.21) 0.33 (0.15) −1.1 (−0.03) 0.31 (0.66) 0.14

3.2 Synoptic-scale forcing diagnostics

To quantitatively diagnose the degree of synoptic-scale influ-

ence on deep convection in these cases, several dynamically

motivated metrics are calculated. As in Duda and Gallus

(2013), we calculate the 700 hPa vertical motion (𝜔), sur-

face frontogenesis, and 200 hPa divergence. The forcing for

quasi-geostrophic vertical motion is assessed by comput-

ing the 500 hPa Q-vector convergence. The 700 hPa 𝜔 and

200 hPa divergence calculations are straightforward. For sur-

face frontogenesis, we neglect the contributions from vertical

motions and diabatic heating. The formulation used for the Q
vectors is

QQQ =
(
− R
𝜎p

𝜕VVVg

𝜕x
⋅ 𝛻T ,− R

𝜎p
𝜕VVVg

𝜕y
⋅ 𝛻T

)
, (2)

where VVVg is the geostrophic wind at 500 hPa, T is the temper-

ature at 500 hPa, R is the universal gas constant, p = 500 hPa

is the pressure, and 𝜎 = (−RT∕p)(d ln 𝜃∕dp) is the static sta-

bility parameter, with 𝜃 the potential temperature. We report

the Q-vector convergence as −2𝛻 ⋅ QQQ, which is roughly pro-

portional to −𝜔; hence positive values for the Q-vector metric

equate to upward motion.

The synoptic-scale forcing metrics are calculated from the

IC (at ts = −6 hr) one-degree gridded GFS data. For each

event, we use the analysis domain, shown by the blue boxes

in Figure 2, which includes the main convective features

of interest. Within this analysis domain, we identify those

grid points in the GFS data where precipitation is occur-

ing when the ensemble perturbations are introduced at ts =
0, and calculate the diagnostics averaged over those grid

points 6 hr earlier, at ts = −6. The coarse resolution of

the GFS analysis and spatial averaging dilutes the diagnos-

tics. To capture the localized effects of frontal boundaries,

we only average values greater than the 25th percentile for

the frontogenesis diagnostic; for the Q-vector diagnostic, we

average values greater than the 75th percentile to isolate the

effect of the strongest upward vertical forcing. While the val-

ues for the diagnostics reported in Table 1 depend on these

percentile averages, the relative ranking of the four cases

does not.

Table 1 shows the values of the synoptic-scale forcing diag-

nostics for each of the four events, along with the same values

normalized by dividing by the forcing for the strongest event,

the April 2017 case. Also listed is the average of all four nor-

malized forcing values Af . The April 2017 case exhibits the

strongest synoptic-scale forcing by far (Af = 1.0). The forc-

ing in the May 2015 case is distinctly weaker (Af = 0.36),

but is nevertheless substantially stronger than the forcing for

the June 2016 (Af = 0.18) and June 2015 (Af = 0.14)

cases. These Af values quantify the discussion in the previ-

ous subsection and facilitate our classification of events by the

strength of the synoptic-scale convective organization. Never-

theless, the values in Table 1 are meant to illustrate the range

in synoptic-scale forcing among the convective events pre-

sented herein, rather than an attempt to classify such events

generally. We also do not assume that the characteristics of

predictability discussed in the remainder of this article depend

invariantly on these metrics.

4 PERTURBATION AND BACKGROUND
KINETIC ENERGY SPECTRA

To measure the scale-dependent structure of perturbation

growth, we calculate the total and perturbation kinetic energy

(KE and KE′) spectral densities following WD17. At a given

height and time, denoting the zonal and meridional veloci-

ties of the mth ensemble member, including the unperturbed

control member, as um and vm, respectively, and denoting the

two-dimensional discrete Fourier transform of a function 𝜙 as

𝜙̂ and its complex conjugate as 𝜙̂∗, the total (or background)

two-dimensional KE spectral density is (Durran et al., 2017,

equation 24)

K̂Em(kh) =
ΔxΔyΔk
8𝜋2nxny

[
ûm(kh)û∗

m(kh) + v̂m(kh)v̂∗m(kh)
]
, (3)

where kh is the magnitude of the horizontal wavenumber, nx
and ny are the number of grid points in the zonal and merid-

ional directions, respectively, and Δx and Δy are the horizon-

tal grid spacing in the zonal and meridional directions. The

spectral density at each individual horizontal wavenumber

(kx, ky) is added to the bin for which kh−Δk∕2 <
√

k2
x + k2

y ≤

kh + Δk∕2, where Δk = 2𝜋∕1, 500 km−1 is the smallest

resolved wavenumber corresponding to a full-domain wave.

The perturbation kinetic energy spectral density K̂E′m is also

calculated from Equation 3, except that the velocities are

replaced by the difference from the ensemble mean, that is,

u′
m = um − u, where the overbar denotes the ensemble mean.7

7Essentially identical results are obtained if the perturbations are computed

as a difference from the unperturbed control member, rather than treating
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FIGURE 5 Spectra of total (solid lines) and perturbation (dashed lines) kinetic energy averaged over heights of 9–12 km for (a, b) April 2017 and (c, d) June

2015 cases. The S ensembles are shown in (a, c); the L ensembles in (b, d), both at times of ts = 1 hr (blue lines), 6 hr (orange), and 12 hr (green). Solid gray

lines are reference lines with slopes of k−5∕3 and k−3. The gray shaded region denotes wavelengths shorter than 7Δx, which are subject to numerical dissipation

For comparison with the Lorenz model, K̂E and K̂E′ are

computed as the average of K̂Em and K̂E′m over all ensem-

ble members. Spectra are also scaled by a corrective factor

(Durran et al., 2017, equation 29) to reduce systematic noise

introduced by binning. As noted in Section 2, spectra are

calculated on the 1500 × 1500 km2 square analysis subdo-

mains highlighted in blue in Figure 2 after detrending the data

following the procedure in Errico (1985).

the control member as part of the ensemble, except that the amplitude of the

perturbation spectrum approaches twice that of the background spectrum.

In Figure 5a,b, we show the spectra of KE and KE′ for

the strongly forced April 2017 case from the S and L ensem-

bles, respectively. For both ensembles, the KE spectra at

ts = 1 and 6 hr for the April 2017 case closely follow a

k−5∕3 slope at scales of 10 km to about 200 km, and transition

gradually toward an approximately k−3 slope at the largest

scales. Wavelengths shorter than 17.5 km (Δx), indicated by

shading, show a steep falloff of KE where numerical dissi-

pation produces the strongest damping (Skamarock, 2004).

This background spectrum is fairly constant in time, dimin-

ishing slightly in amplitude and slightly steepening by 12 hr
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as the convection weakens. While the KE spectra are iden-

tical between the S and L ensembles, the KE′ spectra in the

April 2017 case exhibit a very minor difference at ts = 1 hr:

the spectrum for the L case shows a small increase at the

wavelength of the water-vapor perturbations (140 km), and

slightly larger amplitudes at scales around and larger than that

wavelength. By 6 hr, however, the error spectra are essentially

identical in both the S and L cases. By comparison, the KE′

spectra in the weakly forced June 2015 case (Figure 5c,d)

exhibit a much greater difference between the S and L ensem-

bles in the error at ts = 1 hr than those in the April 2017 cases:

the errors in the S ensemble have grown faster across all scales

than those in the L ensemble. There is still a small difference

in the KE′ spectra between the S and L ensembles at 6 hr, but

any difference is essentially negligible by 12 hr.

The background KE spectrum in the June 2015 case is

notably different from that for all three other cases. A robust

k−5∕3 slope is present only at the time of most vigorous con-

vection, ts = 6 hr in Figure 5c,d. This is not an artifact of

model spin-up (recall the simulation is initialized at ts =
−6 hr), but rather is due to the limited duration of the active

convection during this event (Figure 4b,d,f). At ts = 1 hr (1 hr

after the ensemble perturbations are introduced), the spectral

slope around the 141 km wavelength of the large-scale pertur-

bations is much steeper than k−3. According to Lorenz’s the-

oretical model of scale interactions, such a steep background

spectral slope would greatly slow downscale error propaga-

tion (Lorenz, 1969; Rotunno and Snyder, 2008), potentially

explaining why the initial large-scale KE′ perturbations prop-

agate downscale much more slowly in this event than in the

April 2017 case (compare with Figure 5b,d). After the diur-

nal maximum in convection in the June 2015 case, the power

at small scales again falls off significantly, and by ts = 12 hr

has approached k−3. The tight connection between these vari-

ations in convective activity and spectral slope supports the

importance of convection in generating the observed k−5∕3 KE

power spectrum in the mesoscales (Lilly, 1983; Durran and

Weyn, 2016; Sun et al., 2017, WD17).

To assess the scale-dependent loss of predictability more

precisely, we calculate the KE′ saturation ratio, defined as the

ratio of the ensemble average of perturbation kinetic energy

about the ensemble mean divided by the ensemble average

of total kinetic energy, that is, K̂E′(kh)∕K̂E(kh) (WD17). The

KE′ saturation ratio is plotted as a function of wavelength

in Figure 6 for each pair of S and L ensembles in all four

observed cases. In all cases, the KE′ saturation ratio for both

ensembles grows consistently over time and exceeds 80% at

scales shorter than approximately 20 km by 12 hr. As sug-

gested in Figure 5a,b, there is essentially no difference in

error growth between the S and L ensembles in the April

2017 case, indicating that this strongly forced system is insen-

sitive to the scale of the IC errors. In contrast, small-scale

errors grow more rapidly in the weakly forced June 2015

case, although the difference between the S and L ensembles

becomes small by 12 hr. The other weakly forced event, from

June 2016, similarly exhibits a relatively greater sensitivity to

small-scale IC errors. The May 2015 case, the second most

strongly synoptically forced case, shows slightly more sensi-

tivity to small-scale errors than the April 2017 case, but much

less so than in the two June cases. The behavior of the spec-

tra of the KE′ saturation ratio in Figure 6, and the relative

rankings of the four cases in terms of synoptic-scale forcing,

suggest that strong synoptic-scale forcing greatly diminishes,

or eliminates, the sensitivity of convective systems to the scale

of IC perturbations. Weakly forced cases, on the other hand,

do exhibit more rapid error growth, particularly in the first

6 hr, if the IC errors are small in scale.

5 FRACTIONS SKILL SCORE

The fractions skill score (FSS) was developed by Roberts

and Lean (2008, hereafter RL08) as a means of quantifying

the skill of observable parameters in high-resolution fore-

casts of convective events. It enables comparison of forecast

and observed precipitation at any given spatial scale, focus-

ing on localization errors, which are of vital importance in

identifying locations threatened by severe weather. In all uses

of the FSS in this study, the observed field corresponds to

the precipitation field of the control member with no mois-

ture perturbations, while the forecast fields are obtained from

the perturbed ensemble members.8 To calculate the FSS, the

observed precipitation field is converted to a binary field, IO,

the value of which is one at each point where the observed pre-

cipitation exceeds a pre-defined threshold of hourly rainfall

and zero otherwise. The precipitation in a local neighborhood

of size n surrounding each grid point is then averaged using

a spatial kernel K(n) centered at (i, j) to yield the array of

observed values

O(n)i,j =
n∑

k=1

n∑
l=1

IO

[
i + k − n + 1

2
, j + l − n + 1

2

]
K(n)k,l, (4)

In Equation 4, the summations over k and l span an n-by-n
sized square of grid points; the kernel K(n) determines which

of these points are actually included in the sum and nor-

malizes by the total number of such points. For a square

neighborhood, K(n) = 1∕n2 for all k, l. Here, to be consistent

with two-dimensional spectral calculations, we define K(n) to

be 1∕N(n) at the N(n) points satisfying (k − (n + 1)∕2)2 + (l −
(n + 1)∕2)2 ≤ ((n + 1)∕2)2 (that is, lying within a circle with

a radius (n+ 1)∕2) and 0 elsewhere. The binary field of mod-
eled precipitation, IM, is similarly defined using the modeled

precipitation field and summed over every neighborhood with

IO replaced by IM in Equation 4 to yield an array of forecast

precipitation M(n) (RL08, equation 4).

8As discussed earlier, we analyze the internal predictability of the model,

rather than its ability to reproduce observed weather.
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The mean square error MSE(n) is computed such that

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
O(n)i,j − M(n)i,j

]2
, (5)

where n again denotes the neighborhood size, and Nx and

Ny are the number of grid points in the x and y directions,

respectively (RL08, equation 5). The FSS is defined as (RL08,

equations 6 and 7)

FSS(n) = 1 −
MSE(n)

MSE(n)ref

, (6)

where

MSE(n)ref =
1

NxNy

⎡⎢⎢⎣
Nx∑
i=1

Ny∑
j=1

O2
(n)i,j +

Nx∑
i=1

Ny∑
j=1

M2
(n)i,j

⎤⎥⎥⎦ . (7)

A perfect forecast has a FSS of 1, while a completely missed

forecast has a skill score of 0. RL08 suggest that a skilful

forecast should have a skill score exceeding FSSuniform =
0.5 + f0∕2, where f0 is the fraction of points within the

domain exceeding the precipitation threshold. In subsequent
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figures, we assume that the number of points with precipita-

tion exceeding the threshold is small compared with the total

number of grid points and approximate the skilful threshold

as 0.5.

5.1 FSS in idealized MCS simulations

We introduce the application of the FSS by presenting a con-

textual example from the idealized simulations of MCSs in

WD17, where initial warm bubbles triggered convection in

environments with horizontally uniform vertical profiles of

temperature, humidity and wind with either 10, 20, or 30 m/s

of 0–5 km vertical wind shear. Because wind shear organizes

squall-line structure strongly, and because all the ensemble

members were initialized with identical warm bubbles, the

highest-shear case may be considered the most strongly forced

idealized convective system in WD17. The ensembles were

perturbed with near-surface humidity variations similar to the

ones used in this work. The different wind shears produced

both different storm structures and different degrees of vari-

ability among the ensemble members computed for each pro-

file. For example, the simulations with 20 m/s of wind shear

produced ensemble members having squall lines with wide

variations in their north–south extent (WD17, figure 3). On

the other hand, the simulations with 30 m/s of wind shear pro-

duced ensemble members having squall lines with only very

minor visual differences (WD17, figure 4). From a practical

perspective, a weather forecaster would assign much greater

predictability to the 30 m/s shear cases, since all ensemble

members showed nearly the same basic squall-line structure

and spatial location of convection. Yet, as evident in Figure 7,

which is reproduced from figure 7 of WD17 and is analogous

to the preceding Figure 6, the spectrum of KE′ saturation ratio

shows essentially identical predictability loss by 5 hr regard-

less of the environmental wind shear. Thus, even though the

30 m/s wind shear case appears much more predictable, the

KE′ saturation-ratio metric is unable to distinguish it from less

predictable cases.

If, instead, we analyze the FSS for the same idealized

cases in WD17, we obtain a different result. Figure 8a–c

shows the FSS for an hourly precipitation threshold of 1 mm

at neighborhoods of radius 2, 8, and 32 km for all three

idealized cases, where the scores for all 20 ensemble mem-

bers are averaged together.9 The thin (thick) lines correspond

to ensembles initialized with small-scale 5.7 km wavelength

(large-scale 90 km wavelength) moisture perturbations. To

provide the “observed” values used in the computation of the

FSS, the simulations from WD17 were supplemented with

one additional simulation in which there were no initial per-

turbations for each level of environmental wind shear. Scores

consistently improve as the neighborhood size increases, as

expected, since the spatial location of convective elements

is in better agreement when averaged over larger neighbor-

hoods. All of the simulations have skill scores above 0.5

throughout the duration of the simulations, indicating rela-

tively high confidence in the location of precipitation, but

there are, nevertheless, substantial differences for different

environmental shears. At 6 hr, the FSS for the 30 m/s wind

shear case is very high: 0.87 for the 2 km neighborhood and

0.94 for the 8 km neighborhood, whereas the FSS for the

20 m/s wind shear case is much lower: 0.62 and 0.75 for

the 2 and 8 km neighborhoods, respectively. These differ-

ences in the FSS match the visual difference in the spread of

the synthetic radar reflectivity patterns among the ensemble

members in the two cases, suggesting that the FSS can dis-

tinguish between them in a practical forecasting sense better

than the KE′ saturation ratio. Yet the FSS is actually more

optimistic about predictability than the KE′ saturation ratio,

9The horizontal resolution is 1 km, so these neighborhoods correspond to

n = 5, 17, and 65.
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calculated for neighborhoods of 2 (blue), 8 (orange), and 32 km (green). Thin and thick lines correspond to the S and L ensembles, respectively

as even the smallest neighborhood of 2 km remains above the

skilful threshold of 0.5 in all simulations at 6 hr.

For a given environmental shear, there are also minor dif-

ferences between the FSS scores for the S and L ensembles.

In the 10 m/s case (Figure 8a), the S ensemble has consis-

tently worse skill scores than the L ensemble; the same is

true in the 20 m/s case, although the difference is less pro-

nounced. On the other hand, in the 30 m/s case, the FSS for

the S ensemble is slightly higher than that for the L ensemble.

This change in the relative rates of error growth between the

S and L ensembles as the shear strengthens is also apparent in

the spectra of the KE′ saturation ratio in Figure 7, particularly

at 1 and 3 hr.

As detailed in WD17, the convection in every ensemble

member in these idealized simulations is triggered by three

identical warm bubbles, while the perturbations among the

ensembles have random phase, and therefore a random spa-

tial location, relative to those bubbles. To investigate whether

the difference in skill scores between the S and L ensembles

is produced primarily by modifications to the initial warm

bubbles or by variations in the environment into which the

storms propagate, we ran an additional pair of 20-member
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ensembles in which the moisture perturbations in the vicin-

ity of each warm bubble were essentially eliminated through

multiplication of the perturbation moisture field by

adamp(x, y) = 1 −

{
3∑

n=1

exp

[
−(x − xn)2

2r2
−

(y − yn)2

2r2

]}
,

(8)

where n denotes the bubble number, r = 10 km is the bub-

ble radius, and (xn, yn) is the center of the nth bubble. These

ensembles are otherwise identical to the “S” and “L” ensem-

bles with 20 m/s of vertical wind shear in WD17. The FSS for

these simulations is shown in Figure 8d. In these simulations,

an improvement in the FSS is observed relative to the control

case (Figure 8b) for both the S and L ensembles, but there is

much more improvement in the S ensemble, which now has

higher skill scores than the L ensemble. This suggests that

if the perturbations are small in scale, errors generated on
convective scales have greater influence, through their effect
on initial storm development, whereas if the perturbations
are large in scale, the errors produced in the synoptic-scale
environment have greater influence, through their effect on
convective organization. Indeed, the period from about 3–4 hr

in the simulations in Figure 8d, where the skill scores in the

L ensemble drop off significantly, corresponds to a period

of large-scale convective aggregation in the simulations (not

shown). It should be noted, however, that this conclusion is

drawn from idealized simulations of MCSs with controlled

convective initiation, and therefore may not translate exactly

to the real world.

5.2 FSS in real-data cases

Returning to the real-data simulations, Figure 9 shows the

FSS for each of the four cases, with values for each individual

member of the S and L ensembles plotted along with that for

the grand ensemble mean of all S and L simulations. The FSS

is calculated over the same analysis domain as the KE spec-

tra, denoted by the blue boxes in Figure 2. As for the idealized

cases from WD17, an hourly precipitation threshold of 1 mm

is used, but the neighborhood radii are increased to 5, 20, and

80 km, because of the coarser 2.5 km model resolution.10 At

early times around ts = 3 hr, the weakly forced June 2015 and

June 2016 cases exhibit the lowest FSS, in agreement with

the greater KE′ saturation ratio of those cases at all scales

compared with the more strongly forced cases (Figure 6). By

ts = 6 hr, the 5 and 20 km neighborhood FSS for the June 2015

case are about 0.8 and 0.95, respectively, while both are very

close to 1 in the strongly forced April 2017 case. At ts = 12 hr,

by which time the KE′ saturation ratio has become nearly

identical in all four cases, the FSSs continue to show signif-

icant differences. As shown in Figure 9, the June 2015 case

clearly has the lowest predictability as measured by the FSS,

10The neighborhood size n remains the same in the idealized and real-data

cases.

followed by the June 2016 case. Nevertheless, the FSS indi-

cates that the ensembles produce skilful forecasts at 12 hr even

at the smallest neighborhood size of 5 km, unlike the KE′ sat-

uration ratio, which indicates nearly total predictability loss

at small scales.

For the June 2015 and June 2016 cases, and also to a very

small degree in the May 2015 case, there is a bifurcation in

FSS of individual ensemble members about the grand ensem-

ble mean, particularly for the 5 km neighborhood. As labeled

and illustrated most clearly in Figure 9d, the members with

FSS below the mean are from the S ensembles, while those

above the mean are from the L ensembles. As for the idealized

cases shown in Figure 8, the FSS reveals a higher sensitivity

to small-scale than to large-scale IC errors in environments

with weakly organized convection. The relatively low FSS of

the S ensembles in the weakly forced observed cases is also

consistent with the relative difference in the KE′ saturation

ratios (Figure 6), which indicated greater predictability loss in

the June 2015 and June 2016 cases from IC errors at smaller

scales.

Lastly, we consider FSS for heavy precipitation by increas-

ing the hourly precipitation threshold from 1 to 10 mm. As

expected, there is generally lower predictability for heavier

precipitation. As shown in Figure 10, the FSS values are now

lower, but the relative skill among the four observed events

remains similar for 5 km radius neighborhoods. At radii of 20

and 80 km, however, the scores from the May 2015 case are

comparable with those of the June 2015 and June 2016 cases,

suggesting that there is less distinction between the three

most weakly forced cases when considering high-intensity

convection. Nevertheless, Figure 10 continues to demonstrate

that the April 2017 case, with the strongest synoptic-scale

forcing, still exhibits much better skill scores than the other

cases.

6 CONCLUSIONS

The first goal of this article was to compare the growth rates

of small- and large-scale initial-condition errors in numeri-

cal simulations of observed severe convective systems. The

KE′ saturation ratio, computed for each wavenumber as the

ratio of the perturbation KE to the ensemble-mean back-

ground KE, revealed that, by 6 hr after the introduction of IC

errors, the two cases with the strongest synoptic-scale forcing

(April 2017 and May 2015) show essentially no difference in

error growth between ensembles with equal absolute ampli-

tude small-scale (14 km wavelength) and large-scale (141 km

wavelength) IC errors. This is consistent with the idealized

simulations of mesoscale convective systems in WD17, which

exhibited similar insensitivities to the scale of IC errors. In

contrast, the KE′ saturation ratios for the two cases with the

weakest synoptic-scale forcing (June 2016 and June 2015)

exhibited greater sensitivity to small-scale IC errors than to
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large-scale IC errors, although the sensitivity to initial scale

was greatly reduced by 12 hr into the simulations.

The second goal of this article was to compare two

predictability metrics, the KE′ saturation ratio and the

neighborhood-based fractions skill score. In general, the FSS

gave a clearer indication of relative predictability among both

observed events and idealized convective systems in WD17,

which were revisited in this study. The convection in the

WD17 cases showed substantial variations in the distribution

of synthetic radar reflectivity as a function of environmental

wind shear, but by 5 hr into the simulations the KE′ saturation

ratio suggested all ensembles achieved roughly the same

degree of KE′ saturation, independent of the environmental

shear. In contrast, the FSS for these same idealized systems

showed substantial variations in skill as a function of the envi-

ronmental shear, beginning as early as 3 hr and continuing

until the end of the simulations. The relative predictability

suggested by the FSS for these cases agreed qualitatively

with that suggested by the ensemble spread of the synthetic

radar reflectivity patterns. In particular, the highest FSS,

and nominally greatest predictability, were associated with

ensembles simulating the case with the strongest low-level

wind shear and, in parallel to the real-world simulations, the
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most strongly forced case. The FSS is likely able to distin-

guish better between the convective cases primarily because

it measures precipitation, a direct and localized impact of

convection, instead of horizontal winds, and because it mea-

sures in physical space, in contrast to the domain-wide Fourier

transforms used to calculate the KE′ saturation ratio.

As with the idealized WD17 simulations, the FSS com-

puted for ensemble simulations of the four observed events

showed more variability from case to case than the KE′ satu-

ration ratio. Those differences generally increased with time,

up to 12 hr. The cases that were most strongly forced exhibited

the highest FSS, while those with the weakest synoptic-scale

forcing showed the lowest FSS, consistent with previous

results showing greater sensitivity to initial conditions in

weakly forced convective events (Done et al., 2012; Surcel

et al., 2016). Like the KE′ saturation ratio, the FSS for the

weakly forced June 2015 and June 2016 cases showed more

sensitivity to the scale of the IC errors than did the cases with

stronger forcing. For those weakly forced cases, the FSS for

every member of the S ensemble remained lower than the FSS

for every member of the L ensemble up to roughly 9 hr.

The more rapid KE′ growth, lower FSS scores, and asso-

ciated lower predictability of the ensembles with small-scale

IC perturbations in weakly forced cases appears to arise from

the higher sensitivity of those cases to changes in the position

and strength of the first convective elements, which are more

significantly modified by short-wavelength perturbations. In

contrast, when the IC perturbations are large in scale, they
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modify the background environment in which storms orga-

nize and propagate more significantly, thereby impacting the

strongly forced case more dramatically than those that are

weakly forced. This behavior was isolated by comparing the

FSS for an idealized ensemble in which the moisture pertur-

bations in the immediate vicinity of the initial bubbles were

removed with the FSS for the uniformly perturbed ensemble

in the standard 20 m/s wind-shear case. When IC perturba-

tions were imposed everywhere, including the locations of the

initial warm bubbles (which were identical for all ensemble

members), the FSS for the S ensemble was slightly lower than

that for the L ensemble. However, when the perturbations in

the immediate vicinity of the warm bubbles were removed,

the FSS for the S ensemble became significantly higher than

that for the L ensemble (Figure 8b,d).

An additional factor that may contribute to the higher sen-

sitivity of the June 2015 case to small-scale perturbations

is the major variation in the slope of the background KE

spectrum with time. The background KE spectrum does not

develop a robust k−5∕3 slope until diurnal convection devel-

ops later in the simulation. Instead, 1 hr after the perturbations

are introduced (and 7 hr after the start of the simulation), the

slope of the KE spectrum around the 141 km wavelength of

the large-scale perturbations is steeper than k−3, whereas the

slope is roughly k−5∕3 around the 14 km wavelength of the

small-scale perturbations. Theoretical models of error growth

suggest that this difference in slope could reduce dramatically

the rate at which errors spread downscale in the L ensemble

compared with the upscale error growth in the S ensemble

(Lorenz, 1969; Rotunno and Snyder, 2008).

In conclusion, these results contribute to our understand-

ing of the case-to-case variability of predictability of severe

convective systems. Efforts to reduce IC errors at horizon-

tal scales around 10 km, by assimilating fine-scale obser-

vations and radar, for example, may be most effective in

situations where the convection develops in the absence of

significant synoptic-scale forcing. However, even then, at lead

times beyond several hours, errors originating at large scales

become equally as important as small-scale IC errors. On the

other hand, the practical predictability of more strongly forced

events may best be improved by reducing IC errors on scales

of 100–400 km, as suggested on the basis of the idealized

simulations in Durran and Weyn (2016) and WD17.
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