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Abstract we develop elementary weather prediction models using deep convolutional neural
networks (CNNs) trained on past weather data to forecast one or two fundamental meteorological fields on
a Northern Hemisphere grid with no explicit knowledge about physical processes. At forecast lead times
up to 3 days, CNNs trained to predict only 500-hPa geopotential height easily outperform persistence,
climatology, and the dynamics-based barotropic vorticity model, but do not beat an operational full-physics
weather prediction model. These CNNs are capable of forecasting significant changes in the intensity of
weather systems, which is notable because this is beyond the capability of the fundamental dynamical
equation that relies solely on 500-hPa data, the barotropic vorticity equation. Modest improvements to the
CNN forecasts can be made by adding 700- to 300-hPa thickness to the input data. Our best performing
CNN does a good job of capturing the climatology and annual variability of 500-hPa heights and is capable
of forecasting realistic atmospheric states at lead times of 14 days. Although our simple models do not
perform better than an operational weather model, machine learning warrants further exploration as a
weather forecasting tool; in particular, the potential efficiency of CNNs might make them attractive for
ensemble forecasting.

1. Introduction

At present, numerical weather prediction (NWP) is essential for weather forecasting, providing vital infor-
mation about severe weather threats and risk management. General circulation models (GCMs) used for
NWP combine state-of-the-art numerical representation of atmospheric fluid dynamics and other physical
processes such as radiative transfer and cloud processes. GCMs still have important shortcomings, includ-
ing imperfect physical parameterizations, insufficient resolution to resolve fine-scale weather, and very high
computational cost for operational forecasting. Increasingly, the NWP community has turned to advanced
machine learning (ML) techniques to address some of these shortcomings. ML has improved interpretation
and performance of GCMs in many ways. For example, Rasp and Lerch (2018) used neural networks (NNs)
to successfully improve postprocessing of GCM forecasts to surface stations, while Rodrigues et al. (2018)
demonstrated the ability of deep NNs to downscale GCM output to higher horizontal resolution. Deep NNs
have also been used to identify extreme weather and climate patterns in observed and modeled atmospheric
states (Kurth et al., 2018; Lagerquist et al., 2019; Liu et al., 2016), improve parameterizations in GCMs (e.g.,
Brenowitz & Bretherton, 2018; Rasp et al., 2018), and predict uncertainty in weather forecasts (Scher &
Messori, 2018). Larraondo et al. (2019) demonstrated the ability of deep NNs to extract spatial patterns in
precipitation from gridded atmospheric fields. Finally, ML algorithms have also been used to predict extreme
weather events (e.g., Herman & Schumacher, 2018) and provide operational guidance and risk assessment
for severe weather (McGovern et al., 2017).

Yet a basic question remains: Can ML produce purely statistical weather forecasts by learning from past
weather observations with no explicit information about atmospheric physics whatsoever, thereby learning
to effectively emulate the physical processes of the atmosphere? With several decades of reliable weather
data from satellite observations, widely available open-source software, and efficient graphics processing
unit computing, weather prediction using ML, and specifically deep NNs (LeCun et al., 2015), is becom-
ing increasingly feasible. A few previous studies have begun investigating this problem. Dueben and Bauer
(2018) used NN trained on several years of reanalysis data to predict 500-hPa geopotential height on the
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globe at 6° resolution. Their “global” model, which simultaneously predicts weather at all points on the
globe, only marginally beat persistence at early forecast lead times; NN trained to predict one grid point ata
time from a stencil of local neighboring points and subsequently applied over the entire globe (their “local”
model) fared much better. Nevertheless, their experiment is somewhat limited in its use of relatively little
historical data (only about 7 years of atmospheric samples) and coarse horizontal resolution. Scher (2018)
used a different approach, instead training NNs on the output of a highly idealized GCM to learn to emu-
late the dynamics of the GCM by mapping the atmospheric state at one time to the state at another later
time. Using convolutional NNs (CNNs), which are widely used in image recognition and processing prob-
lems, they were able to significantly outperform baseline metrics and effectively represent the simplified
GCM dynamics. However, the “weather” generated by their GCM was idealized in comparison to the real
world, because processes like chaotic upscale error growth and factors like seasonality were not included.
An extension of this work, which applied CNNs to GCM output including seasons and at higher horizon-
tal resolution, showed a more complicated story (Scher & Messori, 2019). The CNNs performed slightly
worse on model simulations including seasons, while their performance was more severely degraded on
higher-resolution input, albeit more due to the complexity of the resolved weather than the computational
cost of increasing the number of grid points. Nevertheless, these results are encouraging for proceeding
forward with ML-based global weather forecasts.

Here, we approach ML weather prediction head-on by developing models that use CNNs to learn to predict
500-hPa geopotential heights and 700- to 300-hPa thickness from 24 years of atmospheric reanalysis on a
2.5° grid over the Northern Hemisphere. We improve upon the prior work of Dueben and Bauer (2018) by
using more advanced NN architectures, more years of reanalysis data, and higher resolution (albeit over
the Northern Hemisphere only), while in contrast to Scher (2018) and Scher and Messori (2019), we predict
observed weather instead of idealized GCM forecast states. Not surprisingly, our ML models do not compare
in forecast accuracy to current operational NWP models, which have been refined by decades of research,
operate at much higher resolution, and use far more data to describe the initial condition for each forecast.
Nevertheless, our ML models significantly outperform persistence and climatology benchmarks, as well
as a basic dynamical model that computes numerical solutions to the barotropic vorticity equation, which
was the type of model used in the earliest years of NWP. In section 2 we provide details about the model
structure and the data used for training. Section 3 presents the results from our ML weather predictions.
Finally, conclusions and discussion are provided in section 4.

2. The DLWP Model

Our Deep Learning Weather Prediction (DLWP) model uses deep CNNs for globally gridded weather pre-
diction. A global weather prediction model must be given an initial multidimensional atmospheric state
u(?) and yield the state of the atmosphere at a future time, u(t + At). To step the model forward in time, the
predicted state must include all of the features of the input state. Dynamical models of the atmosphere com-
pute tendencies of physical variables determined by equations of motion and physical parameterizations
and then integrate forward in time. Our DLWP CNNs directly map u(#) to its future state u(t + At) by learn-
ing from historical observations of the weather, with At set to 6 hr. This direct mapping is notably different
from the approach of Dueben and Bauer (2018), where their NN is used to predict tendencies, which are
then used in an explicit time-stepping scheme to integrate forward. By feeding the predicted atmospheric
state back as inputs to the model, DLWP algorithms can be iteratively propagated forward without explicitly
using a numerical time-stepping scheme.

A state u for input to a DLWP model will be defined as a four-dimensional array with dimensions equal to
the number of time steps, meteorological variables times vertical levels, latitudes, and longitudes. The “time
steps” dimension indicates how many time steps in the past are provided in the data inputs to the model; for
example, if a model initialized at 0 UTC 1 January has two input time steps at 6-hourly intervals, it would
have data from 18 UTC 31 December and 0 UTC 1 January as inputs and predict the next two time steps,
6 UTC 1 January and 12 UTC 1 January. In early testing, using two time steps yielded significantly better
results than just one, and therefore, all results herein use a time step dimension of 2. Using more time steps
may further improve the forecasts but is left for future work. Individual atmospheric variables (tempera-
ture, humidity, pressure, etc.) on individual vertical levels are simply treated as “channels” similar to the
RGB channels of color images. This allows us to use powerful and efficient image-processing algorithms
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such as two-dimensional convolutions. We note that using data on a globe presents unique challenges to
convolutions due to grid distortion; some of these challenges are discussed further in sections 2.2 and 4.

Careful consideration is required when selecting the specific atmospheric variables to use when building a
DLWP model. Increasing the number of variables greatly increases the number of individual features the
model must predict as well as the number of degrees of freedom within hidden convolutional layers. While
deep CNNs generally benefit from predicting multiple correlated output variables, more complex networks
require increased computation and training iterations, or epochs (for a review of multitask learning, see
Ruder, 2017). In this paper, we will present several DLWP model variants, with some trained only on 500-hPa
geopotential height (Z,,,) and others trained on both Z,, and 700- to 300-hPa thickness (7;4y_3p). DLWP
models might be expected to predict Z,, reasonably well from pattern recognition, but adding thickness
provides a measure of baroclinicity that should allow them to better predict the amplification and decay of
weather systems.

The DLWP CNNs are built using the open-source Keras library for Python (Chollet, 2015) with Google's
TensorFlow backend (Abadi et al., 2015). More details about the NN algorithms are provided in section 2.2.
The code for this project is available at the website github.com/jweyn/DLWP .

2.1. Data

The NNs are trained on gridded reanalysis data from the Climate Forecast System (CFS) Reanalysis
(available at https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-
version2-cfsv2 website; Saha et al., 2010). We use the 2.5° product with 6-hourly time resolution in the period
from 1 January 1979 to 31 December 2010. We chose this particular data set because its low resolution is
ideal for computationally efficient testing and because a CFS reforecast product generated with the opera-
tional CFSv2 model is available for benchmarking. To further increase computational efficiency, we subset
only the northern hemisphere, as cross-equatorial transport is usually not significant on time scales of a
few days.

Data from 2007-2010 were set aside for the test set used in final model performance evaluation. We used the
time periods from 1979-2002 for model training and 2003-2006 for model validation. Distinct periods for
training, validation, and testing were selected to avoid including in the evaluation data times that have high
correlation with neighboring times in the training data. While there is some concern that the distribution
of data may shift during the time frame of data availability, we assume that such climatological shifts in
geopotential heights are insignificant.

Each variable at each vertical level is scaled by removing its Northern Hemisphere climatological mean and
dividing by its mean climatological standard deviation. Scaled variables are denoted with a hat, for example,
Zs40- By scaling with the spatially averaged values, we retain local spatial differences in variability, ensuring
that the NN loss function appropriately weights regions of high variability. No further input or output feature
selection, scaling, or other modification is performed on the data before it is passed to the NNs. Since the NNs
predict scaled variables, an inverse scaling is applied to the NN output to recover dimensional atmospheric
variables.

2.2. Algorithms

The core of our DLWP model is an auto-encoder-like CNN (Baldi, 2012) with six convolutional layers. This
architecture is similar to that used by Scher (2018) and Larraondo et al. (2019). Each of the first two convo-
lutional layers in our CNN is immediately followed by a 2 X 2 max-pooling dimensionality reduction, while
the next two are followed by mirrored 2 x 2 upsampling dimensionality increases. Lastly, two more convo-
lutional layers with no spatial dimensionality changes map the filters back to the output variables. To avoid
dimensionality loss caused by applying filters to the edges of the images, the convolutional layers are all
preceded by an appropriate padding that appends zeros in the latitudinal direction and periodic boundary
conditions in the longitudinal direction. The latter solves the apparent lateral boundary issue in the CNN
forecasts made by Scher (2018, see their Figure 2a). All convolutional layers use the tanh activation func-
tion, except for the final (“output”) layer, which has linear activation as required for a regression problem.
The CNN architecture is summarized in Table 1. The reader is referred to Appendix A for more details on
the convolution operations.

Advantages of the fully CNN architecture include a low number of trainable parameters (the most complex
model has about 200 K parameters; see Table 1) and a requirement that interactions remain local: That
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Table 1
Neural Network Architecture for DLWP as a Sequence of Operation Layers
Layer Filters Filter size Dilation Output shape? Trainable params®
input (vt, 36, 144)
ConvLSTM2D® 2v 3%x3 2 (t, 4v, 36, 144)d 736
Conv2D 32 3x3 2 (32, 36, 144) 608
MaxPooling2D 2X2 (32,18, 72)
Conv2D 64 3%x3 1 (64,18, 72) 18,496
MaxPooling2D 2X2 (64,9, 36)
Conv2D 128 3x3 1 (128, 9, 36) 73,856
UpSampling2D 2X2 (128, 18, 72)
Conv2D 64 3x3 1 (64,18, 72) 73,792
UpSampling2D 2X2 (64, 36, 144)
Conv2D 32 3x3 2 (32, 36, 144) 18,464
Conv2D v 5%5 1 (vt, 36, 144) 1602

Note. The parameter v represents the number of distinct variable/level pairs, while ¢ represents the
size of the time dimension. The layer names correspond to the names in the Keras library. DLWP =
Deep Learning Weather Prediction; LSTM = long short-term memory.

aQutput shape is (channels, y, x). °Approximate number of learned parameters for t = 2, v = 1.
cOnly the LSTM variants include the ConvLSTM2D layer. 9The ConvLSTM2D layer has a sepa-
rate time dimension which is subsequently reshaped into 4vt output channels. For variants with the
ConvLSTM2D layer the inputs and outputs are also reshaped to (¢, v, 36, 144).

is, individual grid points in the output layer are only determined by the neighboring grid points within
the convolutional stencil, similar to local advection in the atmosphere. Nevertheless, because a unique set
of filters is learned for the entire spatial domain, global processes are inherently accounted for, and the
depth of the network, along with the spatial dimensionality reduction from pooling, also enables it to learn
larger-scale interactions. It is unclear whether this combination of global filters and local interactions is aptly
suited for representing multiscale atmospheric phenomena. In particular, it might be better to avoid using a
single global set of output filters to learn the widely different meteorology in the tropics and the midlatitudes.
To investigate this possibility, we trained variants of DLWP where the output convolutional layer is replaced
with a specialized convolutional layer that learns a unique set of filters for every row (latitude band) of the
images; these variants are denoted with “ROW” (see section 2.3).

We also train DLWP variants which include a convolutional long short-term memory (LSTM) layer (Gers
et al., 2000; Hochreiter & Schmidhuber, 1997); these variants are denoted with “LSTM” (see section 2.3).
LSTM units contain a cell state, which is propagated forward in time, modulated by gates (learned weights),
which leverage how much to “forget” from the cell state at the previous time step and how much new infor-
mation to “input” to the cell from the data at the current time step. This enables them to make short-term
modulations to their state while maintaining long-term behavior. Thus, LSTMs are ideally suited to prob-
lems with complex time-dependent structure, including weather prediction. They have been successfully
applied to several weather-related problems, including by Vlachas et al. (2018) to the idealized Lorenz 96
model (Lorenz, 1996) and a barotropic vorticity model, and by Shi et al. (2015) to short-term precipitation
forecasting.

All of the DLWP CNNs are trained using the efficient Adam version of stochastic gradient descent opti-
mization (Kingma & Ba, 2014), with a default learning rate of 1x1073, and using mean-squared-error loss.
To ensure that a suitable loss minimization is obtained, we train for a minimum of 200 epochs followed by
early stopping conditioned on the validation set loss. If no new validation loss minimum is observed within
50 epochs, training stops and the model weights which yielded the validation loss minimum are restored.

Different NN architectures, including some using densely connected output layers, were tested in the early
stages of this project. The architecture described here performed second best in our testing only to a NN
with a densely-connected output layer. However, the memory requirement for a matrix which maps every
input feature vector element to every output feature vector element is untenably large and increases as n?
for n input features, or (1/Ax)* for decreases in horizontal grid spacing. Therefore we eliminated such NNs
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Table 2

List of Presented DLWP Model Variants

DLWP variant Zsoo T700-300 LSTM Latitude dependent

Z v — — —
T v v = =
7 ROW v v — v
Z LSTM v — v —
7 LSTM v v v —
7 LSTM ROW v v v v

Note. The columns labeled Z5y, and 7,¢9_3q indicate whether the DLWP
inputs/outputs include 500-hPa height and 700- to 300-hPa thickness, respec-
tively. Those labeled “LSTM” and “latitude-dependent” specify whether the
DLWP neural network includes an LSTM layer or latitude-dependent output
layer filters, respectively. DLWP = Deep Learning Weather Prediction; LSTM
= long short-term memory.

in favor of the fully convolutional architecture. Furthermore the success of this type of architecture applied
to gridded atmospheric fields (Larraondo et al., 2019; Scher, 2018; Scher & Messori, 2019) further validates
its use. We performed limited validation of the CNNs using varying numbers of convolutional layers and
convolutional filter stencil sizes (and dilation) before obtaining this architecture. As in nearly every deep
learning problem, there is no guarantee that this architecture is optimal.

2.3. Summary of Presented DLWP Variants

Table 2 summarizes the DLWP variants selected for presentation in section 3. We vary the input vari-
ables (e.g., the addition of thickness) or CNN architectures (e.g., the addition of an LSTM layer). The most
basic model, “Z,” is trained only on 500-hPa geopotential height with the CNN architecture described in
section 2.2, while the most complex, “r LSTM ROW,” adds 700-300 hPa thickness to the input data, an LSTM
layer, and latitudinally dependent output layer convolutional filters.

DLWP variants with thickness included in the input and output should have an advantage given sufficient
training data and training epochs because of information about baroclinic growth and decay in the atmo-
sphere. Variants with an LSTM layer are able to interpret time sequences in the input data and should
better represent chaotic behavior, while those with latitudinally dependent output layer convolutional filters
should be better able to represent latitudinal variations in weather patterns.

2.4. Benchmarks

Finally, benchmarks are necessary to help us contextualize the performance of DLWP. Our benchmarks are
(1) an operational full-physics forecast model; (2) the barotropic vorticity model, which solves the funda-
mental dynamical equation for the evolution of the 500-hPa height field (Z,) based solely on its values at
some initial time; (3) climatology; and (4) persistence. Details about these benchmarks are provided below.

1. The CFS reforecast is produced with the full-physics, operational CFSv2 model (Saha et al., 2014) run
at T126 spherical harmonic truncation. These forecasts are initialized with the CFS reanalysis. The CFS
reforecast represents the skill of typical operational models at 1° latitude-longitude resolution. It should
perform far better than our DLWP models because it makes predictions using many variables, many ver-
tical levels, and higher horizontal resolution (1° in contrast to 2.5° for the DWLP models). It includes
parameterizations of physical processes including convective precipitation, the planetary boundary layer
and radiative transfer.

2. The barotropic vorticity equation may be written as

D o
E(C +2Qsin¢) =0, €y

where ¢ is the vorticity of the nondivergent component of the 500-hPa wind, Q is the angular speed of rota-
tion of the Earth, ¢ is the latitude, and D/Dt is the material derivative following the flow. The barotropic
dynamics embodied in (1) conserve absolute vorticity along fluid-parcel trajectories. The first generation
of NWP models predicted 500-hPa heights by numerically integrating the barotropic vorticity equation
(Charney et al., 1950; Silberman, 1954). Our implementation of this model is global, with initial condi-
tions given by the CFS reanalysis. We retain all available spherical wavenumbers represented on the 2.5°
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Figure 1. Forecast root-mean-square error (rmse) of 500-hPa geopotential height averaged over the test period
2007-2009 for several Deep Learning Weather Prediction variants and the climatology, persistence, barotropic, and CFS
benchmarks. The error is spatially averaged over all longitudes, and over latitudes of 20-70°N. CFS = Climate Forecast
System; LSTM = long short-term memory.

regular grid and run the model with a time step of 30 min. Additional details about this model are pro-
vided in Appendix B. Because the only input data required for the barotropic vorticity model is the initial
Zs field, it provides an apples-to-apples comparison between a dynamical model and our DLWP variants
that use only Zs,.

3. Climatology is calculated relative to monthly means in the entire CFS reanalysis data set (1979-2010).

4. Persistence is the initial Z, field held constant with time. Forecasts with verification-time errors
exceeding climatology or persistence are considered to have no skill.

3. Results

We begin by presenting the spatially and temporally averaged error in DLWP and benchmark forecasts as a
function of forecast lead time. To better understand the physical states produced by DLWP, we then present
two example forecasts and a zonally averaged forecast state climatology.

3.1. Average Forecast Error

Figure 1 shows the 72-hr evolution of the spatially averaged forecast root-mean-square error (rmse) in
500-hPa geopotential height, averaged over the latitude band 20-70°N and the testing period from 2007 to
2009, for four key DLWP variants and all of the benchmarks. The rmse in Zy, is one of the most basic mea-
sures of forecast accuracy and is used to assess the performance of state-of-the-art operational NWP models
(Palmer, 2018). We immediately note that all the DLWP variants perform much better than the simple cli-
matology and persistence benchmarks. The DLWP schemes also do much better than the barotropic model,
which in turn, outperforms persistence through a lead time of 36 hr. Not surprisingly, the operational CFS
performs significantly better than DLWP and the other benchmarks, especially at longer forecast lead times.

Among the DLWP variants, “z LSTM” stands out from the rest with the lowest forecast rmse at all times.
Its rmse is about 5% lower than that of the other variants at all lead times past 12 hr. It is encouraging that
the CNN with the best treatment of chaotic time-dependent behavior (an LSTM layer) and with information
about baroclinic growth and decay (inclusion of thickness) performs best. This suggests that with sufficient
training the CNN is able to learn more from additional atmospheric state variables. However, it is also inter-
esting to note that preliminary tests using CNNs trained on geopotential height at three pressure levels (300,
500, and 700 hPa), but no thickness (not shown), did not perform any better than the single-level “Z LSTM”
variant. As in many ML problems, appropriately informed selection of the input and output features is key
to improving model performance. In this case, the extra levels of geopotential height were of limited use
because the model had no information about the vertical structure of the input variables.

The robustness of the preceding results was tested by training ensembles of each of the four DLWP variants
using 12 different initial random seeds without any other changes in the ML architecture. The best perform-
ing CNN of each variant, as measured by the forecast rmse out to 72 hr on the validation set (not shown),
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Figure 2. (a) As in Figure 1 but with the curves for the Deep Learning Weather Prediction variants replaced by the
ensemble mean and one-standard-deviation spread, for the “z LSTM” ensemble (light blue line and shading) and the
“r” ensemble (orange line and shading). (b) As in (a) except with the “Z LSTM” ensemble (red line and shading)
replacing the “z” ensemble. CFS = Climate Forecast System; LSTM = long short-term memory; rmse =
root-mean-square error.

was selected for the results in Figure 1. Figure 2a compares the mean and standard deviation in the fore-
cast rmse for the “Z LSTM” and “z LSTM” DLWP variants, while Figure 2b compares those of the “z” and
“r LSTM” variants. The performance of the 12-member ensemble means is very similar to that of the single
members shown in Figure 1, with “z LSTM” again having lower error compared to both “Z LSTM” and “z”
There is about 25% more spread in the z ensemble than in the others, indicating that this variant has the
least consistent results during training of the CNNs. The improvement produced by using an LSTM layer is
statistically significant at the 99% confidence level when the ensemble means from the “z LSTM” and the

'T” variants are compared using Welch's unequal variance ¢ test (Welch, 1947). Applying the same test to
the “z LSTM” and “Z LSTM” ensemble means shows the improvement generated by adding thickness data

140

a) DJF b) JJA
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c) DJF/JJA ratio

1.0 T T T T T
0 12 24 36 48 60 72
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Figure 3. (a, b) As in Figure 1 but for (a) only the DJF season and (b) only the JJA season. (c) Ratio of forecast rmse in
the DJF season divided by forecast rmse in the JJA season. DJF = December, January, and February; JJA = June, July,
and August; LSTM = long short-term memory; rmse = root-mean-square error.
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Figure 4. 24-hr forecasts of Zs, (contours, dkm) initialized at 0 UTC 13 April 2007, for a subset of the forecast domain over North America.

(a) Initialization state from reanalysis. (b) The 24-hr verification from reanalysis. (c) Forecast from the barotropic vorticity model. (d) Forecast from the CFS
reforecast. (e-h) Forecasts from Deep Learning Weather Prediction variants, as labeled. Colored shading indicates the difference between the forecast and
verification (b) states, in dkm. The 558 dkm contour is highlighted red for emphasis. CFS = Climate Forecast System; LSTM = long short-term memory.

is significant at the 95% confidence level at lead times of 18 and 24 hr, and at the 99% level for lead times of
30 hr or more.

While Figure 1 shows annual averages of rmse, it is also instructive to examine the performance of the
models for the winter and summer seasons separately because in the midlatitudes, there is much greater
variability in Z, in winter than in summer. Figure 3a shows the rmse for December, January, and February
(DJF), while Figure 3b shows the rmse for June, July, and August (JJA), averaged in both cases over the years
2007-2009. Forecast rmse in DJF is much higher than in JJA, as expected, and in both seasons the DLWP
variants continue to easily outperform the climatology, persistence, and barotropic-vorticity-model bench-
marks. Examining the ratio of DJF rmse to JJA rmse (Figure 3c), we find that, over the first 12 hr, the DJF/JJA
ratios for the DLWP variants are closest to unity, whereas persistence and climatology show a much larger
seasonal dependence in their errors. From 24 to 72 hr, the DLWP variants have a nearly constant DJF/JJA
ratio of about 1.5, while that of the dynamical barotropic vorticity model is near 1.9. The DLWP models
do not suffer from the same degradation of performance in the winter season as the dynamical barotropic
vorticity model does, especially at earlier forecast lead times, indicating that the CNNs learned valuable
information about all the seasons from the historical training data. In comparison to the other variants, the
best performing DLWP variant, “r LSTM”, has the largest DJF/JJA ratio owing to better performance in the
summer months rather than degradation in the winter months.

3.2. Example Forecasts

The DLWP models perform well in terms of spatially and temporally averaged error metrics, but how well
do they forecast individual weather events? To address this question, we compare forecasts generated by the
DLWP variants and the benchmark barotropic and CFS models for two initial times, 0 UTC 13 April 2007
and 0 UTC 15 April 2007, that are associated with a significant late-season snowstorm in the eastern United
States. Figures 4 and 5 show contours of the 24-hr forecast Zs, field produced by the models initialized at
these two times, respectively, along with the difference between the observed height field and each forecast
(color fill in panels c-h), for a subset of the model domain covering North America.

The initial condition for the first case shows cutoff lows over the southwestern United States and the Gulf
of Alaska (Figure 4a), both of which decay into open-wave troughs as they propagate eastward over the next
24 hr (Figure 4b). The barotropic model conserves absolute vorticity along the trajectories traced by the
geostrophic wind. Since the relative vorticity is proportional to the Laplacian of the Zs,, height field, the
barotropic model cannot capture major changes in the strength of troughs or ridges. As a consequence, it
fails to capture the weakening of these systems and surprisingly, it intensifies the cutoff low in the Gulf of

WEYN ET AL.

2687



\ & ° .
100 Journal of Advances in Modeling Earth Systems 10.1029/2019MS001705
e ] Eii \ e —-\/

T —— a8

B

53

590

N\

58

"

b) Verificatié

W

2

T = 7 9 ZL§T™

&

Zsy
-20 -10 0 10 20

Figure 5. As in Figure 4 except for forecasts initialized at 0 UTC 15 April 2007. The 546 dkm contour is highlighted in red.

Alaska (Figure 4c; The horizontal scale of this cutoff low increases, which will act to decrease V2Zs,, and
thereby tend to preserve a constant value for the vorticity as the low modestly deepens). As expected, the
operational CFS model forecast (Figure 4d) is very good, with only minor differences between it and the
verification field. The DLWP variants (Figures 4e-4h) generally capture the evolution of these troughs well,
but those that do not include information about the 700- to 300-hPa thickness allow both lows to remain too
deep. Nevertheless, the DLWP forecasts are far better than that from the barotropic model.

In contrast to the decaying systems present in the first case, 2 days later the troughs initially present along
the west coast and over the Midwest United States (Figure 5a) deepen dramatically. Over the next 24 hr,
the trough over the West Coast evolves into a cutoff low and the trough in the Midwest digs strongly to the
southeast (Figure 5b). As expected, based on its limited dynamics, the barotropic model fails to correctly
amplify both systems (Figure 5c). Not surprisingly, the operational CFS model again performs quite well
(Figure 5d). The DLWP variants all do reasonably well; those that include information about thickness better
capture the amplitude and shape of the eastern trough and actually produce less error than the CFS model
near the center of the cutoff low over the Great Lakes.

In both of these cases, the DLWP models appear to suffer from large-scale errors in Z, at high latitudes.
In the first case the heights in much of the northern part of the domain are overestimated; in the second
case they are underestimated. This may be evidence of the inability of the CNN architecture to accurately
capture multiscale atmospheric interactions, as described in section 2.2, particularly near the poles, where
the correct cross-pole connections are not accounted for in the two-dimensional convolution operations on
the regular grid. Nevertheless, these examples show that DLWP produces very realistic short-range weather
forecasts. It is particularly impressive that the two DWLP variants trained only on information about the
geopotential height at a single level can learn to predict changes in amplitude, since this is beyond the
capabilities of dynamical model forecasts based on the same input data.

3.3. Extended Forecasts

In contrast to climate models, where confidence that the model is accurately representing the physics of
the atmosphere is crucial for its utility, our focus is on weather prediction, where daily opportunities for
forecast verification allow one to readily assess the performance and practical utility of a system relying on
ML. Despite this focus on weather prediction, it is useful to examine the behavior of the preceding DLWP
models at longer forecast lead times. Forecasts from almost identical initial states gradually diverge such
that the root-mean-square difference between them approaches a factor of \/5 the difference between either
state and climatology (Leith, 1974). For synoptic-scale midlatitude weather systems, such error saturation
and loss of predictability occurs after roughly 2 weeks (Selz, 2019; Zhang et al., 2019). Our DWLP models
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Figure 6. As in Figure 1 except including all Deep Learning Weather
Prediction variants integrated out 14 days (336 hr.)

were trained to minimize the error in a 6-hr time step; do they continue
to predict realistic atmospheric states on 2-week time scales?

The rmse for all of the DLWP variants and benchmarks integrated out
14 days (336 hr) are shown in Figure 6. As in Figure 1, these data are
averaged over the latitude band 20-70°N and the years 2007-2009. As
expected the rmse in the persistence forecast asymptotes to \/5 times the
error in a climatological forecast. Not surprisingly, the operational CFS
model exhibits the lowest rmse and its errors approach the expected \/5
times climatology more slowly than that of the other models. Among the
DWLP variants, the “z LSTM” variant is clearly superior: its rmse is the
smallest and appears closest to correctly approaching \/5 times the cli-
matological error. Clearly evident in Figure 6 is the unexpectedly poor
performance of “z” model at later forecasts times compared to the “Z” and
“Z LSTM” variants, which have no thickness information. Recalling that
the “z” variant shows the largest ensemble spread among identical model
architectures trained with different random seeds (Figure 2), it may be
that the “z” variant is not as suited for this particular combination of data
variables, or that more training data is needed. The “z” variant's forecasts

also exhibit a clear 2At oscillation not seen in the “Z,” “Z LSTM,” and “r LSTM” DLWP variants. Due to the
configuration of the problem whereby two time steps are used in the inputs and outputs, this oscillation is a
result of the CNN not accurately correlating predicted time steps and giving an inferior forecast for the sec-
ond step. Also shown in Figure 6 are a pair of DLWP variants with latitude-dependent output layer filters.
These variants are also prone to the 2At oscillation and unfortunately do not perform better than the vari-
ants with standard output convolutional filters. The increased CNN complexity for these “ROW” variants
may require more training data to learn the additional parameters.

At longer forecast lead times, DLWP becomes particularly sensitive to nonoptimal weights learned during
training. If the model forecast gradually diverges from the set of realistic atmospheric states, the CNNs can be
confronted with input that is too physically dissimilar from that seen in the training data to allow an accurate
estimate of the future state, thereby reinforcing any tendency of the model to diverge from reality. This may
explain the disappointing results from the “z” variant and the two “ROW” variants apparent in Figure 6.
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Figure 7. Zonal mean and standard deviation of Zs, from reanalysis (blue line) and the (a) “Z LSTM” forecasts and (b) “z LSTM” forecasts (orange lines) at
lead times of 72 hr for the period from 2007-2009. In (c), “r LSTM” is extended out to 14 days (336 hr). The blue (orange) shading represents +1 standard
deviation from the zonal mean of the reanalysis (forecasts). LSTM = long short-term memory.
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Nevertheless, it is impressive that, at least over a 2-week forecast, the magnitude of the rmse in the “z LSTM”
model stays within the correct bounds for the difference between two randomly selected atmospheric states.

As a final assessment of the physical realism in the DLWP forecasts, we compare the zonal mean and stan-
dard deviation of the 72-hr forecasts of Z,,, with the reanalysis data at each verification time for the full
Northern Hemisphere and the period 2007-2009. The meridional dependence of the zonal-mean heights
measures how well DLWP reproduces the mean state of the atmosphere, while the zonal standard deviation
measures DLWP's ability to retain realistic atmospheric variability, such as that produced by midlatitude
storm systems. As shown in Figure 7b, the forecasts from the “r LSTM” model follow the observed zonal
mean nearly exactly except for very slight errors near the equator and the pole. The standard deviation
about the zonal means is also captured almost exactly. Despite having no information about thickness, the
“Z LSTM” model also retains nearly correct zonal mean and standard deviation (Figure 7a), only exhibiting
minor overprediction at latitudes of about 15-30°N.

Figure 7c is identical to Figure 7b, except that we extend the “r LSTM” forecasts out to 14 days. Even at
the 2-week forecast lead time, the model does a good job of maintaining physically reasonable states. There
are modest low biases of about 50 m in Z,, near the pole and the equator, both of which are likely due to
inappropriate boundary conditions. The zonal variance in the midlatitudes is reduced in the DLWP predic-
tion, indicating a reduction in the storm track amplitudes, but it is slightly increased near the equator, again
likely a result of the incorrect southern boundary condition. These results suggest that the “z LSTM” DLWP
model is maintaining realistic representations of mean and variability of the atmosphere over time scales
relevant to deterministic weather forecasting, despite having no explicit knowledge of atmospheric physics.

4. Conclusions

In this study, we trained CNNs to predict the most fundamental atmospheric field, 500-hPa geopotential
height, using historical gridded reanalysis data. Our DLWP model significantly outperforms persistence, cli-
matology, and the most directly comparable dynamical model based on the barotropic vorticity equation.
The CNNs produce realistic representations of evolving weather patterns without the provision of explicit
information about the equations governing atmospheric motions. (The gridded reanalysis data used for the
initial conditions in our forecasts, and for training, testing, and verification of each DWLP variant, are pro-
duced using state-of-the-art weather prediction models as part of the data assimilation procedure. In this
limited respect our DLWP models still rely on explicit information about atmospheric physics and dynam-
ics.) The DLWP variant with a recurrent LSTM layer and 700- to 300-hPa thickness included in its input
performs best, indicating that the CNN is learning useful information about the time dependence from the
LSTM layer and baroclinic effects from the inclusion of thickness. Even DLWP variants trained only on
500-hPa geopotential height data were capable of forecasting the growth and decay of midlatitude systems,
which is remarkable in the sense that the dynamical model that relies solely on information about 500-hPa
height field, the barotropic vorticity model, cannot capture such changes in intensity. This superiority pro-
vides an example of the potential for DLWP models to improve forecasting of atmospheric phenomena for
which we do not have completely accurate governing equations.

More accurate governing equations are, of course, used for all operational NWP, and our best DLWP model,
the “r LSTM” variant, is much less accurate than current state-of-the-art NWP models, including the CFS
benchmark. This is not surprising because our models are initialized with far less information about the cur-
rent atmospheric state (one or two fields at a single vertical level) than every operational NWP model. One
avenue for potential improvement of these DLWP models is extend them to include more input variables
(temperature, winds, and moisture) and data at more vertical levels. Adding more inputs generally requires
more training data, and it remains to be seen how much improvement can be obtained when adding addi-
tional fields while training with reliable reanalysis data sets that only go back about 60 years. One indication
that this data record could be enough for substantial progress is provided by Scher and Messori (2019) who
suggested that there is little benefit to using more than 100 years of GCM data to train CNNss to forecast the
GCM analog atmospheres.

Important improvements might also be obtained by refining the DLWP architecture. Larraondo et al. (2019),
who used deep CNNs to predict precipitation fields from geopotential height, experimented with multiple
CNN architectures and found that the popular U-net (Ronneberger et al., 2015) performed best. The U-net
approach can better capture scale interactions by extracting features from the first convolutional layers,
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which have higher spatial resolution, and appending them at the end of the network. Off-the-shelf CNN
algorithms are not optimally suited for processing global data mapped from a spherical surface, particularly
near the poles. We took some steps to address these deficiencies by adding periodic boundary conditions
and testing CNNs with latitude-aware convolutional filters. We also tested a weighted optimization loss
function that scaled the grid points by area, but this made no significant difference to the model perfor-
mance. Recently, progress has been made toward developing efficient algorithms that perform convolutions
on the sphere in native spherical harmonics (Cohen et al., 2018). These spherical convolutions have shown
much promise for three-dimensional rotation-invariant image processing, and we are investigating their
application to global ML weather prediction.

One particularly intriguing property of our DLWP models is their extreme computational efficiency. On a
consumer-grade graphics processor, training the DLWP models in this study required a one-time computa-
tion cost of 6-8 hr. Running a 72-hr forecast takes about one hundredth of a second. It is difficult to estimate
how the computation required for a more complex DLWP model with many more input variables at higher
resolution would compare to operational NWP models that compute time tendencies from the dynamical
forcing and physical parameterizations for a large set of governing equations and integrate those equations
forward over a large number of comparatively small time steps. Nevertheless, if major computational effi-
ciencies remain after scaling up to more accurate and more complex DLWP models, those models could
be particularly useful in ensemble weather forecasting. We are currently investigating whether CNNs can
indeed serve as a viable ensemble weather forecasting tool.

In the early 1900s, Lewis Richardson attempted the first numerical weather forecast by manually integrat-
ing a numerical approximation to the dynamical and physical equations governing atmospheric motion
(Richardson, 1922). Richardson was not successful, and the first useful weather forecasts had to await the
development of electronic computers and a more sophisticated understanding of numerical methods. Those
first successful weather forecasts occurred in the early 1950s and were based on the barotropic model, which
has served as a benchmark in this paper (Charney et al., 1950). In a similar way, the development of ML
methods capable of forecasting the weather based solely on historical weather data have had to await the
development of sufficiently powerful computers and advances in deep learning. As demonstrated in this
paper, DLWP models are now capable of producing weather forecasts that are far superior to those of the
early 1950s. The prospects for the development of much more accurate deep learning weather forecast
models, based on much more information about the initial atmospheric state, appears excellent.

Appendix A: Convolutional Algorithms

Deep NNs perform very well in image analysis tasks because of convolutional operations, which interpret
spatial grids as congruent images rather than uncorrelated points. A convolutional layer learns weights for
a specified number of filters with a specified grid point size and a depth equivalent to the number of input
channels. These filters are then translated over the entire images to produce a new spatial grid, and generally
a nonlinear activation function, such as tanh or the rectified linear unit (ReLU), is subsequently applied to
the new grid.

With no special treatment of the edges of images, the application of the convolutional filters requires the
edges to be cropped, resulting in a small dimensionality reduction. In image recognition tasks, this is not a
problem, but when reduction is not desired, such as when applying convolutions on an entire globe to yield
a new grid over the entire globe, a common remedy is to pad the images with zeroes. We apply zero padding
at the pole and equator, but in the longitudinal direction, we pad with periodic boundary conditions.

Hyperparameters, which can be tuned to optimize a convolutional layer, include the number of filters, the
filter size, and the dilation of the filters. We only briefly experimented with adding more filters (with no
significant effect) but did try a number of combinations of filter size and dilation. The latter in particular
made important performance improvements in DLWP. In a dilated filter, as shown in Figure A1, the effective
size of the filter is increased without increasing the number of trainable parameters by skipping neighboring
points and only using further points. For example, a 3 x 3 filter dilated by a factor of 2 becomes a 5 x 5
filter with zeros everywhere except at the center, corners, and edges (Figure Al). In DLWP, 3 x 3 dilated
filters applied over the whole globe resulted in better performance than the full 5 x 5 filters. This suggests
that the CNNs learned more effectively when not tasked with learning weights for extra highly correlated
neighboring points.
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Figure Al. Illustration of the convolutional filter stencils used in Deep Learning Weather Prediction. The black outline
corresponds to a 5 x 5 filter, while the red outline and shading corresponds to a 3 x 3 filter. The shaded gray squares
compose a 3 x 3 filter dilated by a factor of 2.

Lastly, convolutional layers in image recognition often also use a technique called maximum pooling to
further reduce the dimensionality of the images. This operation pools together 2 x 2 grids of the image into
a single maximum value, thus reducing the dimensions of the image by a factor of 2 in both the height and
width. The “encoder” part of the autoencoder CNN of Baldi (2012) applies this technique. To return to a fully
global grid for our weather forecasting task, we apply the inverse operation: upsampling, which duplicates
each value in a grid into a 2 X 2 box, thus increasing the dimensions of the image by a factor of 2. This is
used in the “decoder” part of the autoencoder CNN.

Appendix B: The Barotropic Model

Following Charney et al. (1950), we approximate the flow at 500 hPa as nondivergent. We define w (4, p, f) as
the streamfunction for that flow, where 4 is longitude, ¢ is latitude, and y = sin ¢. The barotropic vorticity
equation (1) on the surface of a sphere of radius a can be expressed entirely in terms of y as

oViy 1 [0y oViy  ay oV ] 2Qdw

=— |22 _ PV 2Ll Bl
ot  a|ou 04 04 ou az 0 (BL)

As discussed in Holton & Hakim (2013, p. 468), the preceding can be solved very efficiently if, at any time
ty, w(4, u, ty) is approximated as the sum of spherical harmonic basis functions, because the computation
required to compute y from V2y is trivial. Our numerical solution to (B1) uses a spherical harmonic expan-
sion truncated at T72, leapfrog time differencing with a 30-min time step and includes a scale selective
V# smoother implemented with trapezoidal time differencing over a 2At time step. We interpolate the ini-
tial conditions from a 2.5° latitude-longitude mesh to the spherical harmonic basis at the initial time and
interpolate back to the latitude-longitude mesh at output times.

Acronyms

CFS Climate Forecast System
CNN Convolutional neural network
DLWP Deep Learning Weather Prediction
GCM General circulation model
LSTM Long short-term memory
ML Machine learning
MSE Mean-squared error
NN Neural network
NWP Numerical weather prediction
rmse Root-mean-square error
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