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Abstract. A computationally efficient method is proposed
to replace the piecewise linear number distribution in a hy-
brid bin scheme with a piecewise cubic polynomial. When
the linear distribution is replaced by a cubic, the errors gen-
erated in solutions to the condensation/evaporation equation
are reduced by a factor of two to three. Alternatively, using
the cubic distribution function allows reducing the number of
bins by 20± 5 % when solving the condensation/evaporation
problem without sacrificing accuracy.

1 Introduction

In the microphysics context, a hybrid bin scheme is a two-
moment explicit scheme designed to solve for the evolution
of the size spectrum of cloud droplets and ice crystals. The
particular hybrid bin scheme that is the focus of this paper is
the scheme developed byChen and Lamb(1994); hereafter
referred to as the CL scheme.

The CL scheme has been implemented in meso- and
synoptic-scale cloud resolving models, including the Non-
hydrostatic Modeling System of the University of Wisconsin
(Hashino and Tripoli, 2007) and the Goddard Cumulus En-
semble model (Goddard Space Flight Center, 2011). It has
also been used in case studies of warm clouds (Kuba and Fu-
jiyoshi, 2006; Kuba and Murakami, 2010), orographic clouds
(Chen and Lamb, 1999), synoptically forced cirrostratus (Lin
et al., 2005) and thin cirrus in the tropical tropopause layer
(Dinh et al., 2010).

The CL scheme produces less numerical diffusion than
one-moment bin schemes and so is more accurate. Yet, be-
cause of its computational cost, it has not been implemented
in 3-D or large-scale models. In the CL scheme, the evolu-

tion of two moments (mass and number of particles) in each
bin has to be evaluated, which can impose both computa-
tional and storage burdens in dynamically-coupled multidi-
mensional cloud models.

The CL scheme is based on a linear fit to the number
distribution of microphysical particles in each bin. In this
paper, we show that replacing the linear distribution func-
tion by a cubic polynomial significantly reduces the error
of the scheme in solving the condensation/evaporation equa-
tion. This new scheme can be used to increase accuracy, or
can alternatively allow computations with fewer bins to ob-
tain the same accuracy. Such an increase in efficiency may
be useful for modelers using hybrid bin schemes in cloud re-
solving models.

2 The hybrid bin scheme

2.1 Evolution of the number density

The evolution of the number densityn = n(x,m,t) of micro-
physical particles (droplets or crystals) is described by

∂n

∂t
= −∇ ·(un)+

∂

∂z
(Vtn)−

∂

∂m
(cn)+G (1)

wherex = (x,y,z) is the vector location in space,m is the
particle mass andt is time. The first term in Eq. (1) is ad-
vection in space by the velocity vectoru. The second term is
sedimentation of particles at the terminal fall speedVt. The
third term is growth at ratec by water vapor condensation
onto droplets or deposition onto crystals. The last termG

represents coalescence of droplets or aggregation of ice crys-
tals.
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1004 T. Dinh and D. R. Durran: Hybrid bin scheme

In a cloud resolving model, the changes inn due to the
individual terms in Eq. (1) are computed separately and then
summed together to given at the next time step. Here we
will concentrate on the condensation/deposition term only.

2.2 Subgrid linear distribution

In the original CL scheme, the number densityn is a linear
function of the mass of particlesm in each bin and repre-
sented by

n(m) = n0+k(m−m0), (2)

and the total number and mass of particles in the bin are given
as

N =

∫ mr

m`

n(m)dm, M=

∫ mr

m`

mn(m)dm, (3)

wherem` andmr are the masses that define the bin bound-
aries. Eqs. (2) and (3) are consistent when

n0 =
N
4m

, k =
12N (m−m0)

(4m)3
, (4)

wherem0 = (m` +mr)/2, 4m = mr −m` andm =M/N is
the mean mass of the bin.

The distribution function given by Eqs. (2) and (3) may be
negative in part of the bin. If that happensChen and Lamb
(1994) ensured positiveness by modifying the distribution so
that it occupies only part of the bin. Ifn0+k(m` −m0) < 0,
they set

n(m) =

{
k∗(m−m∗) if m∗ ≤ m ≤ mr ,

0 otherwise,
(5)

where1

m∗ = 3m−2mr , k∗ =
2N

(mr −m∗)2
.

Alternatively, if n0+k(mr −m0) < 0,

n(m) =

{
k∗(m−m∗) if m` ≤ m ≤ m∗,

0 otherwise,
(6)

where

m∗ = 3m−2m`, k∗ = −
2N

(m` −m∗)2
.

2.3 Bin shift

Let N be the number of bins andµ1,µ2,...,µN+1 denote
the grid divisions along the mass axis. In both the original
CL algorithm and our new method, the procedure to stepNj

andMj forward in time for each binj involves growing the
particles in the bin, shifting the bin along the mass axis and
finally mapping the shifted bin onto the original grid. The
algorithm may be described by the following four steps:

1There is an error in the formula fork∗ in Chen and Lamb
(1994). The correct formula fork∗ is given here.

1. The number and mass after one step of condensa-
tional/depositional growth in binj are calculated as

Ñj =Nj ,

M̃j =Mj +Nj c(mj )4t,

wherec(mj ) is the growth rate at the mean massmj =

Mj/Nj . For efficiency, all particles in the bin are as-
sumed to grow at the rate of the mean mass of the bin.

2. The left and right boundaries of the shifted bin(m`,j

andmr,j ) are calculated as:

m`,j = µj +c(µj )4t, mr,j = µj+1+c(µj+1)4t,

wherec(µj ) andc(µj+1) are the growth rate at the mass
valuesµj andµj+1.

3. In the original CL scheme, the linear number distribu-
tion within each shifted bin is computed from̃Nj , M̃j ,
m`,j andmr,j using Eqs. (2), (4), (5) and (6). The new
procedure using the cubic distribution is discussed in the
next section.

4. Find the location of the shifted bin with respect to the
grid by comparingm`,j andmr,j with the grid points
µ1,µ2,...,µN+1. For each grid bin overlapped by the
shifted bin, integrate the distribution function of the
shifted bin to find the number and mass of particles that
will be accumulated in the grid bin. SeeChen and Lamb
(1994) for illustrations.

2.4 Subgrid cubic distribution

The slope of the linear distribution function in each bin does
not depend on the distribution in adjacent bins. As in higher-
order finite volume methods, the distribution within each bin
can be more accurately estimated using information from ad-
jacent bins. A cubic polynomial representing the number dis-
tribution in each bin can be evaluated using information from
the bins immediately to the right and left (in addition to the
total number and mass of the centered bin).

Chen and Lamb(1994) mentioned the possibility of using
higher-order polynomial distributions that were continuous
across bin boundaries. However, continuity at the bin bound-
ary is not the optimal approach because, compared with other
points along the mass axis within the bin, the boundaries of
the bin are subject to the largest error. Indeed, the assump-
tion that the growth rate of particles in the bin is equal to
the growth rate of the mean mass is least accurate at the bin
boundaries. Thegrowth-of-the-meanassumption, though es-
sential to the efficiency of the CL scheme, introduces large
errors at the boundaries and occasionally causes the linear
distribution to become negative there.

Hence, to derive the cubic form of the distribution for each
bin, it is best to avoid using the additional data at the bin
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boundaries. Instead, we use the values of the number dis-
tribution at the mean masses in the two adjacent bins. The
value of the distribution at the mean mass, denoted here by
n, can be approximated by the linear form of the distribution,
i.e. by evaluating Eqs. (2), (5) or (6) at the mean mass value.

Suppose that we represent the number distribution in each
bin as the cubic

n(m) = a0+a1m+a2m
2
+a3m

3. (7)

The coefficientsa0,...,a3 are to be determined by the conser-
vation of number and mass (Eq.3) in the centered bin, and by
requiring that(mL,nL) and(mR,nR) from the left and right
bins satisfy Eq. (7). Here, we need to solve a system of linear
equations for four coefficientsa0,...,a3 for each bin.

An economical solution procedure can be obtained by
rewriting the number distribution function in terms of Leg-
endre polynomials. Legendre polynomials are orthogonal
with respect to a uniform weight distribution on the interval
[−1,1]. Expansion of functions using a basis of orthogonal
polynomials (see, for example,Dahlquist and Bj̈orck, 1974)
is a common practice in numerical methods. The four lowest
order Legendre polynomials are

P0(χ) = 1, (8)

P1(χ) = χ, (9)

P2(χ) =
1

2
(3χ2

−1), (10)

P3(χ) =
1

2
(5χ3

−χ), (11)

whereχ is an independent variable. A key property of Leg-
endre polynomials is orthogonality, which is∫ 1

−1
PjPk dχ =

2

2j +1
δjk, (12)

whereδjk denote the Kronecker delta. If we defineχ as

χ =
2(m−m0)

mr −m`

, (13)

then asm varies betweenm` andmr , χ varies between−1
and 1. Now the distribution function can be written as a func-
tion of χ :

n(χ) = b0P0(χ)+b1P1(χ)+b2P2(χ)+b3P3(χ). (14)

Based on Eq. (12), the conservation of number and mass
(Eq.3) simplifies to

N =
4m

2

∫ 1

−1
(b0P0+b1P1+b2P2+b3P3)P0dχ

= b04m,

M=
4m

2

∫ 1

−1
(b0P0+b1P1+b2P2+b3P3)

(
m0P0+

4m

2
P1

)
dχ

=
4m

2

(
2m0b0+

4m

3
b1

)
,

from which

b0 =
N
4m

, (15)

b1 =
6(M−m0N )

(4m)2
. (16)

Note that whenb2 = 0 andb3 = 0, these values ofb0 andb1
are consistent with the linear distribution function given by
Eqs. (2) and (4).

Next b2 and b3 are determined by requiring that
(χ(mL),nL) and(χ(mR),nR) from the left and right bins sat-
isfy Eq. (14). χ(mL) andχ(mR) are Eq. (13) evaluated at the
mean masses of the left and right bins. This means

b0+b1χL +b2
3χ2

L −1

2
+b3

5χ3
L −3χL

2
= nL, (17)

b0+b1χR+b2
3χ2

R−1

2
+b3

5χ3
R−3χR

2
= nR, (18)

where

χL = χ(mL) =
2(mL −m0)

mr −m`

, χR = χ(mR) =
2(mR−m0)

mr −m`

.

Equations (17) and (18) are two linear equations of two un-
knowns (b2 andb3), which can be solved easily to obtainb2
andb3.

Finally, the coefficients for the cubic distribution function
in standard form are obtained by substituting Eqs. (8)–(11)
and (13) into Eq. (14) and comparing with Eq. (7):

a0 = b0−2qb1+

(
6q2

−
1

2

)
b2−

(
20q3

−3q
)
b3, (19)

a1 =
2b1−12qb2+

(
60q2

−3
)
b3

4m
, (20)

a2 =
6b2−60qb3

(4m)2
, (21)

a3 =
20b3

(4m)3
, (22)

whereq =
m0
4m

.
The cubic distribution function may be negative in part of

the bin, in which case it should be rejected and the linear
form (Eqs.2, 5 or 6) should be used. This is the case if either
of the followings occurs:

– The cubic distribution function obtains a negative mini-
mum inside the bin, i.e., if

4 = a2
2 −3a1a3 ≥ 0

and forme=
−a2+

√
4

3a3
, we havem` ≤ me≤ mr and

n(me) = a0+a1me+a2m
2
e+a3m

3
e < 0.
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– The cubic distribution function is negative at the left
and/or the right bin boundaries, which is the case if

n(m`) = a0+a1m` +a2m
2
` +a3m

3
` < 0,

or

n(mr) = a0+a1mr +a2m
2
r +a3m

3
r < 0.

The only modification to the bin-shift procedure outlined
in Sect.2.3 is in Step 3, which is replaced by

3. Compute the cubic distribution function using
Eqs. (15)–(22), and use this distribution if it is
nonnegative. Otherwise use the linear distribution. The
linear distribution function should also be used for the
leftmost and rightmost bins.

3 Numerical tests

In this section the performances of the original linear scheme
and the cubic scheme are evaluated. Three numerical tests
are presented. In the first two cases, the schemes are imple-
mented in stand-alone codes designed to compute the con-
densation/evaporation equation. In the first test, the solutions
obtained by the two schemes are compared with an analyti-
cal solution. In the second test, the solutions obtained by the
two schemes at low resolution are compared with a converg-
ing numerical solution at high resolution. In the third test,
the schemes are implemented into a two-dimensional cloud
resolving model.

3.1 Evaporation of cloud drops

3.1.1 Initial conditions

For dilute and relatively large spherical drops, the condensa-
tional growth rate can be approximated by

c =
dm

dt
= BSm1/3, (23)

where S is the supersaturation ratio andB = 4.7 ×

10−8 kg2/3 s−1 under standard temperature and pressure.
The initial drop spectrum is assumed to be

f (m) =
N0m

m2
c

exp

(
−

m

mc

)
, (24)

whereN0 = 2.0×108 m−3 andmc is the mode of the distribu-
tion (wheref (m) is maximum). We setmc = 3.5×10−8 kg,
which is the mass of a drop whose radius is 200 µm.

The analytical solution to the evolution of the drop spec-
trum when the growth rate is given by Eq. (23) was derived
by Tzivion et al.(1989). It is

n(m,t)= m−1/3X1/2f
(
X3/2

)
, (25)

whereX = m2/3
−

2
3BSt andf (X3/2) is the initial drop spec-

trum function evaluated atX3/2.
Numerical solutions are computed for the case when drops

evaporate at fixedS = −0.20.

3.1.2 Grid and time spacings

The grid points along the mass axisµj for j = 1,2,...,N +1,
whereN is the number of bins, are defined by

µj =
4

3
ρπr3

j , (26)

rj = rminα
j−1, (27)

α =

(
rmax

rmin

)1/N

, (28)

wherermin = 1 µm andrmax= 1000 µm. The grid thus spans
betweenµ1 =

4
3ρπr3

min andµN+1 =
4
3ρπr3

max and is more
tightly spaced for small radii and masses.

The time step is4t = 0.1 s. The time step must be suffi-
ciently small such that errors associated with time differenc-
ing are minimized.

3.1.3 Results

To evaluate the performance of the linear and cubic schemes
we compare the errors in the solutions obtained by the two
schemes. Since the bin grid is not equally spaced along the
mass axis, L1 error is an appropriate measure. The L1 error
in drop number is computed as

errN =

N∑
j=1

∣∣∣N lin/cub
j −N exact

j

∣∣∣
N

, (29)

whereN lin/cub is the number concentration obtained from
either the linear or cubic scheme atN -bin-resolution and
N exact is the exact solution obtained from Eq. (25). Errors
in the mass concentration of drops are calculated by replac-
ingN withM in Eq. (29).

Solutions for the evaporation problem at 20-bin-resolution
at 50 min are shown in Fig.1a (number of drops per bin)
and b (mass of drops per bin). The solution obtained by the
cubic scheme is more accurate than that by the linear scheme.
In particular, the linear scheme underestimates the number
and mass of larger drops (with major errors in bin 17). At
this resolution, the L1 errors of the linear and cubic schemes
are respectively 5.09×105 and 2.25×105 m−3 in cloud drop
number and 2.06× 10−2 and 7.79× 10−3 kg m−3 in drop
mass.

The errors of the solutions obtained by the linear and cubic
schemes are given as functions of bin resolution in Fig.2. At
most of the bin resolutions shown in the figure, the errors
produced by the cubic scheme are about a third to a half of
those by the linear scheme.

Atmos. Chem. Phys., 12, 1003–1011, 2012 www.atmos-chem-phys.net/12/1003/2012/
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Fig. 1. The analytical and numerical solutions in(a) number and
(b) mass of drops obtained by the linear and cubic schemes at 20-
bin-resolution at 50 min in the evaporation problem. The initial and
final solutions are normalized by the maximum of the exact solu-
tions at respectively the initial time (see Eq.24) and the final time
(see Eq.25). The radii corresponding to the masses at the bin cen-
ters are indicated at the top of the plot. The bin numbers are indi-
cated at the bottom of the plot.

It is interesting to note that the cubic scheme switches from
cubic to linear approximations in respectively 14 and 4 % of
the time at 20 and 80 bins. At higher resolutions the cubic
approximation is used more often because the discretized nu-
merical solution is smoother.

3.2 Depositional growth of small ice crystals

3.2.1 Initial conditions

If ice crystals are assumed spherical, the depositional growth
rate can be calculated as

c =
dm

dt
=

4πrSice

RvT
esat,iceD

′
v
+

Ls
k′

aT

(
Ls

RvT
−1

) (30)

(Pruppacher and Klett, 1978, p. 448), wherem andr are re-
spectively the mass and radius of ice crystals,Rv is the gas
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Fig. 2. L1 errors in(a) number and(b) mass of drops of the so-
lutions at 50 min obtained by the linear and cubic schemes in the
evaporation problem. The errors are plotted in logarithmic scale.

constant for water vapor,Ls is the latent heat of sublimation,
k′

a is the modified thermal conductivity of air,D′
v is the mod-

ified diffusivity of water vapor in air,esat,ice is the saturation
vapor pressure over plane ice surface,Sice is the supersatu-
ration ratio with respect to ice andT is temperature. Here
we will consider the case of ice crystals in thin cirrus in the
tropical tropopause layer (TTL), where typicallyp = 100 mb
andT = 193 K.

The supersaturation ratio isSice = 0.40 initially. In super-
saturated condition,Sice will decrease with time as water va-
por is deposited onto ice crystals.

There is no analytical solution for this case. To evaluate
the performance of the linear and cubic schemes, numeri-
cal solutions obtained by these schemes at low resolution
are compared with a numerical solution obtained by either
of these schemes at high resolution. At high resolution both
schemes converge to the same result, so either scheme can be
used to obtain the high resolution solution.

The initial crystal spectrum is assumed to be Eq. (24),
whereN0 = 5.0× 105 m−3 and mc = 2.5× 10−13 kg. The
latter is the mass of a crystal whose radius is 4 µm.
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Fig. 3. Numerical solutions in(a) number and(b) mass of ice crys-
tals obtained by the linear and cubic schemes at 30 min in the de-
positional growth problem. The low resolution solutions (blue and
red curves) are obtained at 6-bin-resolution. The high resolution so-
lution (black, dashed curve) is obtained at 200-bin-resolution. The
initial and final solutions are normalized by the maximum of the
high resolution solutions at respectively the initial and final time.
The radii corresponding to the masses at the bin centers are indi-
cated at the top of the plot. The bin numbers are indicated at the
bottom of the plot.

3.2.2 Grid and time spacings

The grid points along the mass axisµj for j = 1,2,...,N +1,
whereN is the number of bins, are defined by

µj =
4

3
ρπr3

j ,

rj = rmin+α(j −1),

α =
rmax−rmin

N
,

wherermin = 0.3 µm andrmax= 12 µm.rmax= 12 µm is suf-
ficiently large for this case because during the simulation no
ice crystal grows to a radius larger than 12 µm. The grid is
more tightly spaced for smaller masses but is equally spaced
in radii. A grid that is equally spaced in radii is possible in
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Fig. 4. L1 errors in(a) number and(b) mass of ice crystals of the
solutions at 50 min obtained by the linear and cubic schemes in the
depositional growth problem. The errors are plotted in logarithmic
scale.

this case because the range of crystal sizes to be covered by
the grid is narrow (between 0.3 and 12 µm).

The time step is4t = 1 s. Tests with smaller time steps do
not show significant differences.

3.2.3 Results

The supersaturation ratioSice decreases from 0.40 at the ini-
tial time to 0.076 at 30 min.

Numerical solutions at 6-bin-resolution at 30 min are
shown in Fig.3a (number of crystals per bin) and b (mass of
crystals per bin). The solution obtained by the cubic scheme
is more accurate than that by the linear scheme. At this res-
olution, the L1 errors of the linear and cubic schemes are
respectively 6.66×103 and 1.85×103 m−3 in crystal num-
ber and 1.08×10−8 and 3.16×10−9 kg m−3 in crystal mass.
Compared with the high resolution solution and the cubic
scheme, the linear scheme overestimates the maximum mass
in bin 4 and underestimates the masses in the bins adjacent
to the maximum (bins 3 and 5).
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Fig. 5. The radiative heating rate (K d−1) in a cloud simulation using the cubic scheme at 50-bin-resolution. The scale is compressed in the
horizontal.

The errors of the solutions obtained by the linear and cubic
schemes are given as functions of bin resolution in Fig.4.
The errors of the cubic scheme are typically about a third of
those of the linear scheme.

The error reduction due to the cubic scheme means that the
number of bins can be reduced without sacrificing accuracy.
For the same accuracy, the number of bins required for the
cubic scheme is 20±5 % less than that of the linear scheme.
This is estimated as the difference in the intercepts of a hor-
izontal line (whose value is the desired error) with the error
curves of the linear and cubic schemes in Figs.2 and4.

3.3 Application in a cloud resolving model

In this section the performances of the linear and cubic
schemes are evaluated in a two-dimensional cloud resolving
model. We have been using this model to simulate thin cirrus
in the TTL.

The microphysical species relevant to TTL cirrus are water
vapor and ice. Ice crystals in TTL cirrus are approximately
spherical because they are small in size (most are less than
50 µm in radius). Hence depositional growth of ice crystals
can be approximated by Eq. (30). Aggregation is negligible
for small crystals and is ignored in the model.

In addition to the microphysics, the model solves for the
radiative and dynamical processes. Part of the model descrip-
tions can be found inDurran et al.(2009) and Dinh et al.
(2010). More recent model developments and the related re-
search are to be described in a forthcoming manuscript.

In the cloud simulations shown here, the bin grid is defined
by Eqs. (26)–(28), wherermin = 0.25 µm andrmax= 50 µm.
The spatial domain is between 0 and 6000 km in the horizon-
tal and from 15 km to 18 km in the vertical. In the horizon-
tal the resolution is4x = 5 km and in the vertical4z varies
from 5 m in the vicinity of the tropopause to 50 m at the top
and bottom of the domain. The time step is4t = 20 s. The
large time step inevitably introduces some degree of error.
However, it is appropriate here because the schemes are to
be tested within practical model settings.
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Fig. 6. Radiative heating, averaged over the same range ofx as in
Fig. 5, obtained by using the linear scheme at 20 and 50 bins and
the cubic scheme at 15, 20 and 50 bins.

The heating resulting from the absorption of radiation by
ice crystals is examined here. It is a function of both ice
number and mass concentration. The radiative heating deter-
mines the feedback of the microphysics on the cloud dynam-
ics and thereby provides a concise way to compare the impact
of different bin formulations on the cloud morphology.

The spatial profile of the radiative heating at a particu-
lar time in a simulation using the cubic scheme at 50-bin-
resolution is shown in Fig.5. At this time the radiative heat-
ing is zero outside the box shown in the figure.

The difference between the solutions obtained by the lin-
ear and cubic schemes is smaller at 50 bins than at 20 bins
(see Figs.6 and7). This suggests that the two schemes con-
verge at high resolution. Although the convergence is not
perfect at 50 bins, we do not run the model at finer resolutions
because doing so is computationally expensive. The solution
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obtained by the cubic scheme at 50 bins will be taken as
the standard against which solutions obtained by the linear
scheme and/or at lower resolutions are compared.

The L1 difference in the radiative heating (Fig.8) is com-
puted as

errQ =

Nx∑
i=1

Nz∑
k=1

∣∣∣Qlin/cub,N
i,k −Q

cub,50
i,k

∣∣∣
NxNz

,

whereQlin/cub,N is the radiative heating obtained from either
the linear or cubic scheme atN -bin-resolution,Qcub,50 is the
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Fig. 9. Computing times required by the microphysics routine and
by the whole model when the linear and cubic schemes are used.

standard solution, and Nx and Nz are the numbers of data
points in space over the same range ofx andz as in Fig.5.

At the same resolution, the cubic scheme is significantly
more accurate than the linear scheme (see Figs.6, 7 and8).
As shown in Fig.9, this increase in accuracy requires a 10 %
increase in computing time spent in the microphysics rou-
tine (which computes ice nucleation, depositional growth and
sedimentation). As also shown in Fig.9, the associated in-
crease in the computing time for the full cloud model is just
5 %. We conclude that it is worthwhile to apply the cubic
scheme in this model to improve accuracy.

Alternatively, the cubic scheme can be used to reduce
computational cost without loss of accuracy. For example,
the cubic scheme at 15 bins is more accurate than the linear
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scheme at 20 bins (see Figs.6, 7 and8). Most noticeably,
the cubic scheme at 15 bins captures the spatial variations
of the radiative heating aroundx = 3300 km more accurately
than the linear scheme at 20 bins (Fig.7). The computing
times required to run the model with the linear scheme at
20 bins and the cubic scheme at 15 bins are respectively 7.2
and 6.0 h. Thus, when switching from the linear scheme to
the cubic scheme, the number of bins can be reduced from
20 to 15 (a 25 % reduction) without sacrificing accuracy or
increasing computing time.

For modelers, it is helpful to note that the cubic scheme is
most advantageous in the intermediate resolutions. When the
bin grid is too coarse to resolve the particle spectrum, such as
when the spectrum spreads out over only a few bins, neither
the linear nor the cubic scheme performs well. On the other
hand, when the resolution is very high, the two schemes con-
verge, so the improvement gained by using the cubic scheme
is insignificant. We think that the cubic scheme would be
useful for many current cloud resolving models with bin mi-
crophysics, as these models fall into the intermediate resolu-
tion range (more than 10 but less than 100 bins).

4 Summary

We have presented a computationally efficient method to re-
place the piecewise linear number distribution in the hybrid
bin scheme originally developed byChen and Lamb(1994)
with a piecewise cubic polynomial. For models in which the
CL scheme has been implemented, migrating from the lin-
ear distribution function to the cubic distribution should be
relatively simple.

When solving the condensation/evaporation equation, the
cubic scheme may be used to improve accuracy or to reduce
computational cost. The number of bins could be reduced by
20±5 % without loss of accuracy. However, the reduction
in resolution is appropriate only when the particle spectrum
is adequately resolved by the grid. For both the original CL
scheme and the cubic scheme, a minimum resolution is often
required to adequately capture the variations in growth rates
and interactions between particles of different bins.
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