
ATMS442: Governing Equations

D~V

Dt
= −1

ρ
∇P − f k̂ × ~V (1)

Dw

Dt
= −1

ρ

∂P

∂z
− g (2)

Dρ

Dt
= −ρ∇ · ~U (3)

Dθ

Dt
= 0 (4)

Notes

• Assumptions: neglected sphericity terms, friction, heating, and conduction.

• ~U = (u, v, w) = velocity vector (m/s). ~V ≡ (u, v).

• P = pressure (Pa); ρ = density (kg/m3); P = ρ R T .

• θ = T
(

P00

P

)R/Cp
= potential temperature (K); T = temperature (K).

• g = effective gravity (m/s2).

• f = 2 Ω sin φ = Coriolis parameter (s−1); φ = latitude.

• D

Dt
=

∂

∂t
+ ~U · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

Lagrangian change = local change + advection.

Important force balances:

(1)
D~V

Dt
≈ 0 =⇒ ~Vg =

1

ρf
k̂ ×∇P geostrophic balance.

(2)
Dw

Dt
≈ 0 =⇒ ∂P

∂z
= −ρ z hydrostatic balance.



ATMS442: Boussinesq Equations

D~V

Dt
= − 1

ρ0

∇P − f k̂ × ~V (5)

ρ0
Dw

Dt
= −∂P

∂z
− ρg (6)

∇ · ~U = 0 (7)

Dθ

Dt
= 0 (8)

Notes

• Assumptions: Constant density (ρ0) everywhere except in the bouyancy term.

=⇒ This assumes that the time changes of density are small, which is fine for shallow

motions, but not for deep motions (e.g. convection).



ATMS442: Shallow Water Equations

D~V

Dt
= − 1

ρ0

∇P − f k̂ × ~V (9)

∂P

∂z
= −ρ0 g (10)

∇ · ~U = 0 (11)

Dθ

Dt
= 0 (12)

Notes

• Assumptions: Constant density (ρ0), completely incompressible fluid with depth h(x, y);

hydrostatic balance.

• D

Dt
=

∂

∂t
+ ~V · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

• Integrating the hydrostatic equation gives P (z)− P (0) = −ρ0gz + f(x, y). The pressure

at z = h is a constant (C), which implies f = ρ0gh− P (0) + C, and:

P (z) = ρ0g(h− z) + C (13)

• Since h is a function of (x, y) only, then so is P , and by (9) the tendency of ~V is a function

of (x, y) too. Going one step further, if we assume that initially ~V doesn’t depend on z, then

it never will.

• Using the definition for θ, and constant density, one can show that (12) is the same as:

DP

Dt
= 0. (14)



• Applying (14) to (13) we find that
DP

Dt
=

Dh

Dt
− Dz

Dt
= 0. Since

Dz

Dt
= w, (14) is the

same as:

Dh

Dt
= w. (15)

• Finally, integrating the continuity equation over depth h, we find w = −h (∇ · ~V ), which

eliminates w from (15):

Dh

Dt
= −h (∇ · ~V ). (16)

• Our final form of the shallow water equations uses (13) to express the pressure gradient

term in (9) in terms of h.

Shallow Water Equations

D~V

Dt
= −g∇h − f k̂ × ~V (17)

Dh

Dt
= −h∇ · ~V . (18)

More notes:

• If ∇ · ~V = 0, the shallow water equations simplify to a single equation, (17). One can

show that this is the same as the barotropic vorticity equation:

D

Dt
(ζ + f) = 0 (19)

where ζ =
∂v

∂x
− ∂u

∂y
.



ATMS442: Quasigeostrophic Equations

Dg
~Vg

Dt
= −∇Φ − f k̂ × ~V (20)

∂Φ

∂P
= −RT

P
(21)

∇ · ~Va =
∂ua

∂x
+

∂va

∂y
+

∂ω

∂p
= 0 (22)

Dgθ

Dt
+ ω

dθ0

dP
= 0 (23)

Notes

• Assumptions: Pressure as vertical coordinates (decreases upward!); a reference atmosphere

that depends on P only (subscript “0”); “f” plane.

• ω =
DP

Dt
is the vertical motion; it is negative for rising air.

• Φ is the geopotential (units: m2 s−2).

• ~Va = ~V − Vg is the “ageostrophic” wind.

• ∇ · ~Vg = 0, the geostrophic wind has no divergence.

• Dg

Dt
=

∂

∂t
+ ~Vg · ∇ =

∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

Lagrangian change = local change + geostrophic advection.


