

ATMS442: Governing Equations

$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho} \nabla P - f \hat{k} \times \vec{V} \quad (1)$$

$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial P}{\partial z} - g \quad (2)$$

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \vec{U} \quad (3)$$

$$\frac{D\theta}{Dt} = 0 \quad (4)$$

Notes

- Assumptions: neglected sphericity terms, friction, heating, and conduction.
- $\vec{U} = (u, v, w)$ = velocity vector (m/s). $\vec{V} \equiv (u, v)$.
- P = pressure (Pa); ρ = density (kg/m^3); $P = \rho R T$.
- $\theta = T \left(\frac{P_{00}}{P} \right)^{R/C_p}$ = potential temperature (K); T = temperature (K).
- g = effective gravity (m/s^2).
- $f = 2\Omega \sin \phi$ = Coriolis parameter (s^{-1}); ϕ = latitude.
- $\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{U} \cdot \nabla = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}$
Lagrangian change = local change + advection.

Important force balances:

$$(1) \frac{D\vec{V}}{Dt} \approx 0 \implies \vec{V}_g = \frac{1}{\rho f} \hat{k} \times \nabla P \text{ geostrophic balance.}$$

$$(2) \frac{Dw}{Dt} \approx 0 \implies \frac{\partial P}{\partial z} = -\rho z \text{ hydrostatic balance.}$$

ATMS442: Boussinesq Equations

$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho_0} \nabla P - f \hat{k} \times \vec{V} \quad (5)$$

$$\rho_0 \frac{Dw}{Dt} = -\frac{\partial P}{\partial z} - \rho g \quad (6)$$

$$\nabla \cdot \vec{U} = 0 \quad (7)$$

$$\frac{D\theta}{Dt} = 0 \quad (8)$$

Notes

- Assumptions: Constant density (ρ_0) everywhere except in the buoyancy term.
⇒ This assumes that the time changes of density are small, which is fine for shallow motions, but not for deep motions (e.g. convection).

ATMS442: Shallow Water Equations

$$\frac{D\vec{V}}{Dt} = -\frac{1}{\rho_0} \nabla P - f \hat{k} \times \vec{V} \quad (9)$$

$$\frac{\partial P}{\partial z} = -\rho_0 g \quad (10)$$

$$\nabla \cdot \vec{U} = 0 \quad (11)$$

$$\frac{D\theta}{Dt} = 0 \quad (12)$$

Notes

- Assumptions: Constant density (ρ_0), completely incompressible fluid with depth $h(x, y)$; hydrostatic balance.
- $\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{V} \cdot \nabla = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}$
- Integrating the hydrostatic equation gives $P(z) - P(0) = -\rho_0 g z + f(x, y)$. The pressure at $z = h$ is a constant (C), which implies $f = \rho_0 g h - P(0) + C$, and:

$$P(z) = \rho_0 g (h - z) + C \quad (13)$$

- Since h is a function of (x, y) only, then so is P , and by (9) the tendency of \vec{V} is a function of (x, y) too. Going one step further, if we assume that *initially* \vec{V} doesn't depend on z , then it never will.
- Using the definition for θ , and constant density, one can show that (12) is the same as:

$$\frac{DP}{Dt} = 0. \quad (14)$$

- Applying (14) to (13) we find that $\frac{DP}{Dt} = \frac{Dh}{Dt} - \frac{Dz}{Dt} = 0$. Since $\frac{Dz}{Dt} = w$, (14) is the same as:

$$\frac{Dh}{Dt} = w. \quad (15)$$

- Finally, integrating the continuity equation over depth h , we find $w = -h(\nabla \cdot \vec{V})$, which eliminates w from (15):

$$\frac{Dh}{Dt} = -h(\nabla \cdot \vec{V}). \quad (16)$$

- Our final form of the shallow water equations uses (13) to express the pressure gradient term in (9) in terms of h .
-

Shallow Water Equations

$$\frac{D\vec{V}}{Dt} = -g\nabla h - f\hat{k} \times \vec{V} \quad (17)$$

$$\frac{Dh}{Dt} = -h\nabla \cdot \vec{V}. \quad (18)$$

More notes:

- If $\nabla \cdot \vec{V} = 0$, the shallow water equations simplify to a single equation, (17). One can show that this is the same as the **barotropic vorticity equation**:

$$\frac{D}{Dt}(\zeta + f) = 0 \quad (19)$$

where $\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$.

ATMS442: Quasigeostrophic Equations

$$\frac{D_g \vec{V}_g}{Dt} = -\nabla\Phi - f \hat{k} \times \vec{V} \quad (20)$$

$$\frac{\partial\Phi}{\partial P} = -\frac{RT}{P} \quad (21)$$

$$\nabla \cdot \vec{V}_a = \frac{\partial u_a}{\partial x} + \frac{\partial v_a}{\partial y} + \frac{\partial \omega}{\partial p} = 0 \quad (22)$$

$$\frac{D_g \theta}{Dt} + \omega \frac{d\theta_0}{dP} = 0 \quad (23)$$

Notes

- Assumptions: Pressure as vertical coordinates (decreases upward!); a reference atmosphere that depends on P only (subscript “0”); “f” plane.
- $\omega = \frac{DP}{Dt}$ is the vertical motion; it is negative for rising air.
- Φ is the geopotential (units: $\text{m}^2 \text{ s}^{-2}$).
- $\vec{V}_a = \vec{V} - V_g$ is the “ageostrophic” wind.
- $\nabla \cdot \vec{V}_g = 0$, the geostrophic wind has no divergence.
- $\frac{D_g}{Dt} = \frac{\partial}{\partial t} + \vec{V}_g \cdot \nabla = \frac{\partial}{\partial t} + u_g \frac{\partial}{\partial x} + v_g \frac{\partial}{\partial y}$
Lagrangian change = local change + *geostrophic* advection.