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This primer is designed to provide an overview of many basic concepts and properties of

linear matrix algebra as briefly as possible; i.e. proofs are left to the reader.

Definitions and algebra

A matrix is a rectangular array of numbers (real or complex) arranged in horizontal rows

and vertical columns. We shall denote matrices by boldface capital letters, such as A, and

the entries (elements) of the matrix by lowercase letter with subscripts, such as aij, where

the first index (i) increments down rows, and the second index (j) increments out columns;

we may also refer to A as [aij]. The entries for i = j are called the main diagonal, and

matrices having only non-zero entries on the main diagonal are called diagonal. Summing

the diagonal entries of a matrix gives the trace: tr(A) =
∑n

i=1 aii.

The order (or size) of the matrix is m × n (“m by n”), where m is the number of rows,

and n is the number of columns; the shorthand notation A ∼ m× n will be used. Matrices

with the same number of rows and columns are square. A special square matrix called the

identity matrix (I) is a square, diagonal, matrix having only ones along the main diagonal.

Whenever “0” appears it is understood that this is a matrix of the appropriate size having

all entries equal to zero.

Vectors are matrices with only one row or column; here vectors will be denoted by bold

lowercase letters (e.g. x). A column vector with m elements has order m × 1 and a row

vector with n elements has order 1 × n. The transpose of A, AT , has rows and columns

interchanged; i.e., the first row becomes the first column, the second row becomes the second

column, etc. For complex matrices, the Hermitian transpose (see below) of A, AH is

obtained by taking the transpose and complex conjugate of each matrix element. In the case

where only complex conjugation is required (no transpose), an overbar will be used (e.g. Ā)
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Addition and subtraction

Matrix addition and subtraction proceed element-wise: A + B = [aij + bij].

These operations are both associative: (A + B) + C = A + (B + C)

and commutative: A + B = B + A

Matrix multiplication

Given matrices A ∼ m × n and B ∼ n × p, their product AB gives a matrix C ∼ m × p,
whose elements are defined by

cij =
n∑
k

aik bkj, (1)

that is, a sum over element-by-element multiplication of the ith row of A by the jth column

of B.

Matrix multiplication is associative: (AB)C = A(BC)

and distributive: A(B + C) = AB + AC

but, in general, not commutative: AB 6= BA

transposition: (AB)T = BTAT

Multiplication of a matrix by a scalar simply multiplies every element of the matrix by the

scalar, and is commutative (kA = Ak).

Matrix inverse

B is an inverse of a square matrix A if AB = BA = I. A matrix that has no inverse is

called singular, and one that does is called nonsingular. The inverse of a non-singular

matrix is unique.

(AB)−1 = B−1A−1 (2)

(AT )−1 = (A−1)T (3)

Woodbury Formulae (A ∼ n x n; U ∼ n x k; D ∼ k x k; V ∼ k x n)

(A + UDV)−1 = A−1 −A−1U(D−1 + VA−1U)−1VA−1 (4)
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DV(A + UDV)−1 = (D−1 + VA−1U)−1VA−1 (5)

Specific application: A→ R; D→ B; U→ H; V→ HT

BHT(HBHT + R)−1 = (B−1 + HTR−1H)−1HTR−1 (6)

Determinants

The determinant of a square matrix is a scalar. For a 2× 2 matrix, det(A) = | A |, is∣∣∣∣∣∣ a11 a12a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21. (7)

In general, determinants of n × n square matrices larger than 2 × 2 may be obtained by

reduction to the 2× 2 form through

det(A) =
n∑
j=1

(−1)j+1a1j det(A1j). (8)

Here A1j is the (n − 1) × (n − 1) matrix that results from removing the first row and jth

column from A.

Properties:

• If det(A) 6= 0, then A is nonsingular.

• If any row or column of A is zero, then det(A) = 0.

• If two rows of A are equal, then det(A) = 0.

• det(AB) = det(A) det(B).

• det(AT ) = det(A).

• det(A−1) = det(A)−1, provided A−1 exists.

• det(cA) = cndet(A) for scalar c.

Eigenvectors and eigenvalues

A nonzero column vector, x, is a right eigenvector of A, with eigenvalue, λ, if

Ax = λx. (9)

Rearranging (9) gives (A − λI)x = 0, which has a non-trivial solution for x provided that

det(A− λI) = 0. Expanding the determinant gives the characteristic polynomial of A,

det(A− λI) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0. (10)
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The Cayley-Hamilton Theorem says that every matrix satisfies its own characteristic

equation:

anA
n + an−1A

n−1 + · · ·+ a1A + a0 = 0. (11)

Left eigenvectors are defined by yTA = λyT . Note that the left eigenvectors of A are the

right eigenvectors of AT ; therefore these vectors are also called the adjoint eigenvectors.

Properties:

• tr(A) =
∑n

i=1 λi.

• det(A) = λ1λ2 · · ·λn.

• Eigenvectors associated with unique eigenvalues are linearly independent.

• A matrix is singular if and only if it has a zero eigenvalue.

• If x and λ are an eigenvector–eigenvalue pair for A, then x and λ−1 are an eigenvector–

eigenvalue pair for A−1.

• The eigenvalues of AT are the same as for A.

• Therefore there are left and right eigenvectors of A that share the same eigenvalue.

• Left and right eigenvectors are orthogonal: yTi xj = 0, for i 6= j.

Matrices A and B are similar if there is an invertible matrix, X so that

A = X B X−1. (12)

An important special case involves diagonal B, which means that X diagonalizes A. In this

case, X is the eigenvector matrix of A, which has as column vectors the right eigenvectors

of A. By the properties outlined above, this means that X−1 is proportional to the transpose

of the matrix of adjoint eigenvectors, YT , where the columns of Y are ordered so that the

ith column of X and Y share the same eigenvalue. Then B has the eigenvalues of A along

the main diagonal, ordered so that they correspond to the appropriate columns of X. This

shows that if A has a zero eigenvalue, then it must be singular.

Functions of matrices It turns out that the Cayley-Hamilton Theorem can be used to

evaluate arbitrary functions of matrices. The result is

f(A) = anA
n + an−1A

n−1 + · · ·+ a1A + a0 = 0. (13)
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The coefficients ai may be determined by:

(i) In (13), replace the lefthand side by r(λ) and on the righthand side Aj by λj. There is

one such equation for each eigenvalue.

(ii) Solve the n equations for the n unknowns (aj).

(iii) Substitute the aj into (13).

Note that if A has repeat eigenvalues, additional steps must be taken to obtain a unique

solution.

A function that comes up frequently is exp(A t), which may be evaluated from the similarity

transformation of A using its eigenvectors, E, and diagonal matrix of eigenvalues, Λ:

At = E Λ E−1 t. (14)

The matrix exponential may then be evaluated from

exp(At) = E T E−1, (15)

where T is a diagonal matrix with diagonal entries given by tii = eλit.

A matrix square root is a matrix, X, such that

X X = A. (16)

If A and X are positive semidefinite (see below) then X is unique. Further insight may be

gained by noting that any positive definite matrix may be expressed as A = LLH (Cholesky

factorization), and any matrix may be expanded in a singular value decomposition (SVD;

see below); i.e. L = USVT . Direct substitution gives the square root of A: X = USUT .

Differentiation

Derivatives of matrices by scalars, and integrals of matrices, proceed by operating on each

element of the matrix individually. Differentiation of scalars, vectors, and matrices, by

vectors and matrices, is more complicated. Here we consider only differentiation by vectors

since this comes up more often in practical applications. First we must define what we expect

by derivatives in terms of the shapes of the resultants; these are not unique and the tranpose

of these relationships is sometimes defined (both are self consistent).
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Definition 1 (f scalar; x ∼ n x 1 vector):

∂f

∂x
≡


∂f
∂x1
∂f
∂x2
...

∂f
∂xn

 . (17)

Definition 2 (x ∼ n x 1 vector; y ∼ m x 1 vector):

∂y

∂x
≡


∂y1
∂x1

∂y2
∂x1

· · · ∂ym
∂x1

∂y1
∂x2

∂y2
∂x2

· · · ∂ym
∂x2

...
. . .

∂y1
∂xn

∂y2
∂xn

· · · ∂ym
∂xn

 (18)

These definitions yield the following relationships.

f scalar, x ∼ n x 1, y ∼ n x 1, z ∼ m x 1, A ∼ m x n, B ∼ n x n

f = xTy ∂f
∂x

= y

f = yTx ∂f
∂x

= (yT)T = y

f = xTx ∂f
∂x

= x + (xT)T = 2x

z = Ax ∂z
∂x

= AT

f = xTB x ∂f
∂x

= Bx +
[
xTB

]T
= Bx + BTx

f = xTB y ∂f
∂x

= By +
[
xTB ∂y

∂x

]T
= B y +

(
∂y
∂x

)T
BTx

f = yTB y ∂f
∂x

=
(
∂y
∂x

)T
By +

[
yTB∂y

∂x

]T
=
(
∂y
∂x

)T
By +

(
∂y
∂x

)T
BTy

(19)

Vector Spaces

Vector spaces are defined by sets of vectors that obey the basic algebraic operations described

in the first few pages of this primer (addition, subtraction, multiplication, etc.). A subspace

is some subset of a larger set of vectors that is also a vector space. A set of n vectors

xi = {x1, . . . ,xn} is linearly independent if the only coefficients that satisfy the equation

a1x1 + a2x2 + · · ·+ anxn = 0 (20)

are a1 = · · · an = 0; i.e. there is no way to scale and add the vectors to get zero. Note that

if a set of vectors is linearly independent, then any subset of those vectors is too.
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The span of a set of vectors is the set of all possible linear combinations of these vectors,

and this is denoted by span{x1, . . . ,xn}; we often refer to this set of linear combinations

as “the space spanned by” the vectors {xi}. For example, in a three-dimensional Cartesian

coordinate system, the unit vectors along each coordinate axis span the entire space—every

point in the space is “reachable” by scaling and adding these vectors. Such basis vectors

may be defined for any set of vectors space by the smallest subset of vectors that are linearly

independent and span the space of the full set. The dimension of the space is then given

by the number of basis vectors.

The range of an m× n matrix A, ran(A), is defined by all vectors y such that

A x = y, (21)

for a vector x in a vector space. This mapping is one-to-one if for every y there is a

unique x. If the column vectors of A are written as the set {x1, . . . ,xn}, then ran(A) =

span{x1, . . . ,xn}.

Similarly, the null space of A, null(A), is defined by

A x = 0. (22)

The rank of a matrix is defined by

rank(A) = dim(ran(A)). (23)

Note that rank(AT ) = rank(A), and dim(null(A)) + dim(ran(A)) = n. A is rank

deficient if rank(A) < min{m,n}.

Inner products and norms

The inner product between n× 1 column vectors x and y is

r = 〈x,y〉W = xHWy. (24)

Here, W is the n×n Hermitian matrix (see below) that defines the inner product; the result,

r, is scalar. For W = I this is the vector dot product, which gives the fraction of x in the

direction of y. If r = 0 the vectors are orthogonal. Note that orthogonality depends
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on the chosen inner product, as defined by W! When W = I, the norm is called the

Euclidean (or Frobenius) norm, which is the sum of the squared values; if the mean value of

the entries in the column vectors is zero, then r gives the variance in the chosen coordinates.

Note that we may always re-express the inner product in term of the Euclidean norm by

changing coordinates through the linear transformation

x′ = W1/2x, y′ = W1/2y. (25)

This point is crucial: a choice of inner product is equivalent to a choice of coordinates.

Properties:

• 〈x,x〉W > 0 for x 6= 0. The inner product is only zero for x = 0.

• 〈x,y〉W = 〈y,x〉
W

.

• Distributive rule: 〈x + y, z〉W = 〈x, z〉W + 〈y, z〉W.

• Schwarz inequality: |〈x,y〉W|2 ≤ |〈x,x〉W|2 |〈y,y〉W|2.

Norms are used to measure the “size” of vectors and matrices, and are denoted by ‖ · ‖.
They must satisfy the the following properties:

(i) ‖X‖ ≥ 0.

(ii) ‖X‖ = 0 iff X = 0.

(iii) ‖cX‖ = |c|‖X‖ for any scalar c.

(iv) ‖X + Y‖ ≤ ‖X‖+ ‖Y‖
(v) ‖XY‖ ≤ ‖X‖‖Y‖

Inner products are often used to define norms, and the most common is the Euclidean norm,

based on the Euclidean inner product:

‖x‖ = [〈x,x〉]1/2 =
[
xTx

]1/2
. (26)

Special matrices

The adjoint of an m× n matrix A is an n×m matrix A∗ defined by

〈x,Ay〉W = 〈A∗x,y〉W, (27)

for all m× 1 vectors x and all n× 1 vectors y. The adjoint matrix is given by

A∗ = W−1 AH W. (28)
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In the limiting case of W = I,A∗ = AH . A matrix is self adjoint if A∗ = A; A must be

square.

A Hermitian matrix satisfies: A = AH ; real matrices that satisfy A = AT are symmetric.

Hermitian matrices have real eigenvalues and orthogonal eigenvectors.

A normal matrix satisfies: AAH = AHA. These matrices also have orthogonal eigenvec-

tors.

A unitary matrix satisfies: A−1 = AH . These matrices are also normal. The columns of a

unitary matrix form an orthonormal basis. The eigenvalues of a unitary matrix are complex

numbers satisfying satisfying |λ| > 1.

An orthogonal matrix is a real matrix that satisfies: A−1 = AT . Orthogonal matrices are

also unitary.

A positive semidefinite matrix is a Hermitian matrix that satisfies: 〈Ax,x〉 ≥ 0; if the

inequality is greater than zero, the matrix is positive definite.

Singular value decomposition (SVD) and the generalized inverse

Any real m× n matrix may be decomposed as (SVD):

A = U S VT , (29)

where U(∼ m× n) and V(∼ n× n) are orthogonal matrices, and S(∼ n× n) is a diagonal

matrix, with values σi along the main diagonal; the σi are called the singular values of A.

Let ui and vi be the column vectors of U and V, respectively. ui and vi are called the left

and right singular vectors of A, respectively, and they satisfy

Avi = σiui ATui = σivi. (30)

If A has r non-zero singular values (σ) then:

• rank(A) = r.

• null(A) = span{vr+1, . . . ,vn}.
• ran(A) = span{u1, . . . ,ur}.
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• A =
r∑
i=1

σiuiv
T
i .

• ‖A‖2 =
r∑
i=1

σ2
i for the Frobenius norm.

• det(A) =
n∏
i=1

sii, so the determinant is zero if there exists one zero singular value.

So if A is n× n square with n non-zero singular values, then A has no null space.

Note also that (29) leads directly to the following eigenvector problems:

•(ATA) V = V S2.

•(AAT ) U = U S2.

In both cases the matrix in parenthesis is symmetric, and therefore has real eigenvalues and

orthogonal eigenvectors.

One very important application of SVD involves the inversion of a matrix. In particular, it

generalizes the concept of a matrix inverse beyond nonsingular square matrices to non-square

matrices, and even singular square matrices! (29) leads directly to the generalized inverse

(pseudoinverse) for any matrix:

A−1 = V S̃ UT , (31)

where S̃ is a diagonal m× n matrix with the first r values along the main diagonal given by

the inverse of the non-zero singular values σ−1i ; the other values zero.

QR decomposition

Any m× n matrix (m ≥ n) can be factored as

A = QR (32)

where Q is a m× n unitary matrix and R is an n× n upper triangular matrix. If A is real,

then Q is orthogonal. This decomposition is useful for computing Lyapunov vectors, and is

also related to the determinant of a matrix as follows:

det(A) = det(Q)det(R)
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