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This primer provides an overview of basic concepts and definitions in probability and

statistics. We shall denote a sample space by S, and define a random variable by the re-

sult of a rule (function) that associates a real number with each outcome in S. For simplicity,

consider two discrete random variables that are associated with events in the sample space, A

and B. The probability of A, denoted by P (A), can be viewed as the frequency of occurrence

of the event (the “frequentist perspective”). Equivalently, P (A) represents the likelihood of

the event occurring; this is called the “Bayesian perspective,” which will prove useful for

interpreting conditional probability. There are three basic probability axioms. Probability

axiom #1 states that P (A) is a real number between 0 and 1. The complement of A, Ac, is

defined as all events in S that are not in A; P (A) = 1− P (Ac). A familiar example derives

from rolling a one on an unbiased six-side die, which occurs with probability 1/6. We can

check this by rolling the die many times, counting the number of ones, and dividing by the

number of rolls. “Probability axiom #2” says that P (S) = 1. “Probability axiom #3” will

be defined below, but basically it says that if we have n outcomes that don’t overlap, the

probability of all of them occurring is just the sum of the probabilities for each outcome.

For discrete random variables, we shall use probability mass functions (PMFs). PMFs

return a probability for the discrete random variable, X. For the unbiased six-side die

P (X = 6) = 1/6, etc. For continuous variables, we shall use probability density functions

(PDFs), denoted by p(x). A PDF is related to a probability through an integral relationship,

which is unity over the whole sample space. For example, in one dimension,

P (−∞ < x < ∞) =

∫ ∞

−∞
p(x) dx = 1. (1)

The probability that x is between a and a + da is

P (a ≤ x ≤ a + da) =

∫ a+da

a

p(x) dx ≈ P (a) da (2)

Note that P (a ≤ x ≤ a+da) may be a very small number even at the “peak” of a distribution

if da is small; however, it will be larger than all others for similarly chosen da and different
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x. Furthermore, it doesn’t really make sense to say that, “the probability of x = a is P(a)”

because as (2) shows, this limiting case gives

P (x = a) =

∫ a

a

p(x) dx = 0. (3)

Union and Intersection

Sample space (S): the set of all possible outcomes. Example: the sample space for a

six-sided die consists of the integer values 1,2,3,4,5, and 6. P (S) = 1.

Figure 1: Venn diagrams for (left) mutually exclusive events (center) intersection or
probability of A and B [P (A ∩B)] and (right) union or probability of A or B [P (A ∪B)].

Mutually exclusive events: A and B share no common outcomes (Fig. 1, left panel).

Intersection P (A ∩ B), “A and B”: outcome is both A and B (Fig. 1, center panel). If

A and B are mutually exclusive, then P (A ∩ B) = 0. The intersection is commutative,

P (A∩B) = P (B∩A), and associative, P (A∩B∩C) = P ([A∩B]∩C) = P (A∩ [B∩C]).

Union P (A∪B), “A or B”: outcome is either A or B. From the Venn diagram in Fig. 1 (right

panel) we can see that the probability of A or B is the sum of the individual probabilities,

minus the intersection, which gets added twice:

P (A ∪B) = P (A) + P (B)− P (A ∩B). (4)

If A and B are mutually exclusive, then P (A∪B) = P (A)+P (B); i.e. sum the probabilities.

The union is commutative, P (A ∪ B) = P (B ∪ A), and associative, P (A ∪ B ∪ C) =

P ([A ∪B] ∪ C) = P (A ∪ [B ∪ C]).

NOTE: Union and intersection are not associative: P ([A ∪ B] ∩ C) 6= P (A ∪ [B ∩ C]),

but they do satisfy the distributive property: P (A ∪ [B ∩ C]) = P ([A ∪ B] ∩ [A ∪ C]) and

P (A ∩ [B ∪ C]) = P ([A ∩B] ∪ [A ∩ C]).
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We may now state “Probability axiom #3:” given n mutually exclusive events A1, A2, . . . , An,

then P (A1 ∪ A2 ∪ . . . An) =
∑n

i=1 P (Ai).

Conditional probability

Conditional probability is denoted by P (A | B) and read as “the probability of A given that

B has occurred.” Given that B has occurred, the sample space shrinks from S to B. We

expect that P (A | B) ∝ P (A ∩ B), since the sample space is now just B. Since P (B | B)

must be unity and P (B ∩B) = P (B), the constant of proportionality must be 1/P (B):

P (A | B) =
P (A ∩B)

P (B)
. (5)

Similarly

P (B | A) =
P (A ∩B)

P (A)
(6)

Using (6) to replace P (A ∩B) in (5) gives Bayes’ Theorem,

P (A | B) =
P (B | A) P (A)

P (B)
. (7)

Note that if two events are mutually exclusive, then P (A ∩B) = P (A | B) = 0.

Extending to three events (see Fig. 2 below), we expect that the probability of A given

that B and C have occurred, P (A | B ∩ C) or simply P (A | B, C), is proportional to the

probability of the intersection of A, B, and C, P (A ∩B ∩ C) or simply P (A, B, C):

P (A | BC) =
P (A, B, C)

P (B, C)
, (8)

where the constant of proportionality is deduced by similar logic to that for (5). A similar

expression applies for P (B | A, C):

P (B | A, C) =
P (A, B, C)

P (A, C)
. (9)

Substituting P (A, B, C) from (9) into (8) gives

P (A | B, C) =
P (B | A, C)P (A, C)

P (B, C)
. (10)

Using the fact [i.e., (5)] that P (A, C) = P (A | C)P (C) and P (B, C) = P (B | C)P (C) yields

P (A | B, C) =
P (B | A, C)P (A | C)

P (B | C)
. (11)

3



Figure 2: Probability of A and B and C [ P (A ∩B ∩ C) = P (A, B, C)].

More generally, the chain rule of conditional probability allows one to “factor” joint prob-

abilities. Previously we discussed the “product rule” for two variables,

P (A, B) = P (A | B)P (B) = P (B | A)P (A), (12)

and a similar result for three variables,

P (A, B, C) = P (A | B, C)P (B, C) = P (A | B, C)P (B | C)P (C). (13)

Extending to n variables,

P (A1, A2, . . . , An) = P (A1 | A2, . . . , An)P (A2 | A3, . . . , An) · · ·P (An−1 | An)P (An). (14)

A Markov Chain, denoted A → B → C, is defined by a joint probability that factors as

P (A, B, C) = P (C | B)P (B | A)P (A), which implies that C is independent of A. If A, B, C

occur sequentially in time (as implied by the arrows in the definition), this means that in

order to determine the probability at the new time, C, we only need to know the probability

of the current time, B.

Marginal probability

Marginal probability represents the unconditional probability of one or more independent

random variables without considering information from other random variables; e.g. consider

P (A) instead of P (A, B). For discrete random variables, we obtain P (A) from P (A, B) by

summation over the unwanted variable in the joint probability mass function: P (A) =∑
B

P (A, B) =
∑
B

P (A | B)P (B). Similarly, for continuous random variables, marginal

probability density functions are defined by integrating over the unwanted variables in the

joint probability density function; e.g., p(y) =

∫
y

p(x, y)dy =

∫
y

p(x | y)p(y)dy.

Likelihood
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With conditional probability, we are given specific information about an event that affects the

probability of another event; e.g., knowing that B = b allows us to “update” the probability

of A by P (A | B = b) through (7). Conversely, if we view the conditional probability as a

function of the second argument, B, we get a likelihood function,

L(b | A) = αP (A | B = b), (15)

where α is a constant parameter. For example, consider a sequence of observations of a

two-sided coin with outcomes “H” and “T.” If we flip the coin once and observe “H” we

can ask, “what is the likelihood that the true probability, P (H) is 0.5?” Fig. 3 (left panel)

shows that L = 0.5, and in fact the most likely value is P(H) = 1; note that L(0) = 0 since

“H” has been observed and therefore must have a nonzero probability. Suppose flipping

the coin again also gives “H.” Maximum likelihood is still located at P (H) = 1, and the

likelihood of smaller P (H) is diminished. Remember, that we can turn this around and

ask, if we know that P (H) = 0.5 (i.e., the coin is fair), what is the probability of observing

“HH?” This is conditional probability, which in this case is 0.25 (the same as L(0.5 | “HH ′′).

Observing “HHH” gives a cubic function for L, and so one. If, on the other hand, one of the

observations is also “T,” then both L(0) and L(1) must be zero (Fig. 3; right panel).

Figure 3: Likelihood as a function of the probability of “H” on a two-sided coin. On the left,
the first three trials give only “H,” whereas on the right “T” is observed as well.

Note that, unlike conditional probability, likelihood is not a probability, since it may take

values larger than unity, and does not integrate to one.

Independence. Events A and B are independent if the outcome of one does not depend

on the outcome of the other; i.e.

P (A | B) = P (A). (16)
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Appealing to (5), (16) implies that

P (A ∩B) = P (A)P (B), (17)

i.e., the outcome “A and B” is determined by a product of probabilities. This is a great

simplification that is often made as a leading-order approximation. Of course it is perfect in

some cases, as for example in rolling two dice, where the outcome on one die has no affect on

the other; the probability of rolling a six on each is (1/6)× (1/6). Note that independence

can not be gleaned from examining a Venn Diagram.

A general “multiplication rule” for independent events following directly from (16):

P (A1 ∩ A2 · · · ∩ An) = P (A1)P (A2) · · ·P (An) (18)

Given n mutually exclusive and exhaustive [
∑n

i=1 P (Ai) = 1] events A1, . . . , An, the “Law of

Total Probability.” says that for some other event B

P (B) = P (B | A1)P (A1) + · · ·+ P (B | An)P (An) (19)

or, equivalently

P (B) =
n∑

i=1

P (B | Ai)P (Ai). (20)

Since the Ai are mutually exclusive, we just need to add up the intersections of each with

B, and since they are exhaustive there is no probability unaccounted for by the Ai. Note

that we may use this result in the denominators of (5) and (7).

Properties of Probability Density Functions (PDFs)

Cumulative distribution function (CDF):

F (x) =

∫ x

−∞
p(y) dy. (21)

The expected value of a PDF is equivalent to the “center of mass” in classical physics. It

is determined by the expectation operator, E[·], defined by

E[x] =

∫ ∞

−∞
x p(x) dx. (22)

The expectation operator is linear, e.g. E[ax + by] = aE[x] + bE[y].
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The kth moment about the expected value is defined by

µk =

∫ ∞

−∞
(x− µ)k p(x) dx, (23)

where µ = E[x]. Note that the first moment is zero, and that the second moment is called

the variance, and is usually denoted by σ2; the standard deviation is defined as the

square-root of the variance, σ.

The covariance between two random variables is defined by

cov(x, y) = E[(x− µ)(y − ν)] = E[xy]− µν, (24)

where µ and ν are E[x] and E[y], respectively. The covariance determines the linear

relationship between two quantities, and the strength of this relationship is measured by

the correlation coefficient,

corr(x, y) =
cov(x, y)

σxσy

, (25)

which ranges between −1 and +1. If x and y are independent, then cov(x, y) = corr(x, y) =

0.

Note that these definitions for PDFs extend naturally to multidimensional settings, and also

to discrete random variables; in the discrete case, integrals are replace by sums.

Gaussian (Normal) Probability Density Function

Although there are many analytically defined PDFs, the Gaussian is particularly important

in many areas of science. The assumption of Gaussian statistics is often invoked because

it greatly simplifies the analysis, since all moments (23) of the PDF may be determined

from the mean and covariance. A theoretical underpinning for this widespread use of the

Gaussian PDF is given by the Central Limit Theorem, which states that the sum of many

independent, identically distributed random variables is normally distributed (i.e., the mean

value approaches nµ and the variance approaches nσ2 for sufficiently large n); note that

“identically distributed” means “have the same distribution.”

In one dimension, the Gaussian (Normal) distribution is defined by

p(x) = (2π)−1/2(σ)−1e−
1
2

(x−µ)2

σ2 , (26)

where µ is the expected value and σ2 is the variance. A shorthand notation to denote a

variable having a Gaussian distribution is x ∼ N(µ, σ2).
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Properties of the Gaussian include:

• If x is normally distributed, then so is a linear function of x. If x ∼ N(µ, σ2) then

y = ax + b ∼ N(aµ + b, a2σ2).

• The normal sum (difference) distribution: adding (subtracting) different Gaussian distri-

butions yields a Gaussian.

Multivariate PDFs and Conditional Probability

Set union discussed on page 2 for discrete variables generalizes to joint probability density

functions for continuous random variables, p(x). For example, the n-dimensional generaliza-

tion of the Gaussian distribution is

p(x) = (2π)−n/2(| B |)−1/2e−
1
2
(x−µ)T B−1(x−µ), (27)

where x are µ are vectors and B is the covariance matrix. The vector x has one entry for

each of the n degrees of freedom, as does µ, which represents the vector of expected values.

The covariance matrix, real and symmetric, is defined by B = E[(x− µ)(x− µ)T ], and

| · | is the determinant. Diagonal elements of B represent the variance in each degree of

freedom, and the off-diagonal elements represent cov(xi, xj); in the case where all degrees of

freedom are independent, B is diagonal. The superscripted “T” denotes the transpose. In

the limiting case of n = 1, (27) recovers (26). Each property of the one-dimensional Gaussian

has a multi-dimensional extension. One useful example is the linear transformation of the

n× 1 Gaussian random vector, x ∼ N(µ,B), by the m× n matrix operator, A,

Y = Ax, (28)

where Y ∼ N(Aµ,ABAT).

The generalization of Bayes Theorem to multivariate continuous random variables is given

by

p(x|y) =
f(x,y)

f(y)
=

p(y|x) p(x)

p(y)
. (29)

Equivalently, using the definition for joint probability, (29) may be expressed as

p(x|y) =
p(x,y)

p(y)
. (30)

To help illustrate conditional probability, consider a two-dimensional example for Gaussian

variables x and y having zero mean, correlation ρ, and standard deviation σx and σy,
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respectively. The conditional probability of y given x can be shown from (30) and (27)

to be

p(y | x) =
1√
2πσ

e−
1
2

(y−µ)2

σ2

where µ = ρxσy/σx and σ = σy(1−ρ2)1/2 are the mean and standard deviation, respectively,

of the conditional probability density. Note that the from the definition of correlation, the

mean can be re-written as µ = cov(x, y)x/σx
2, which is the linear regression of y on x. Note

also that the standard deviation in the conditional probability density is smaller than in the

original, unconditional, density by the factor (1 − ρ2)1/2, and therefore higher correlation

results in lower variance in the conditional PDF.

These results are illustrated in the figure below. Red lines in the main panel show contours

of constant probability density, which reflect greater variance in the x variable compared

to the y variable. Black lines in the subplots below and to the right show the marginal

probabilities; that is, the integral over the other dimension. Suppose that new information

becomes available showing that x = 1, as indicated by the thin blue line in the main panel.

Applying Bayes theorem gives the blue curve in the right panel. The green line shows the

linear regression of y on x, which intersects the blue line right at the peak of the conditional

PDF shown in the right panel. Furthermore, note from the results derived above that the

variance of the conditional PDF is independent of x, so that for other values of x, the

conditional PDF shown in the right panel simply shifts along the y axis, following the green

line, without change of shape.

In contrast to the conditional PDF, the thin red line shows the value of the joint PDF at

x = 1. First, notice that the area under the blue and red lines is different: the blue curve

is a true probability density function, with unity integral, whereas the red line is not. The

thin red line denotes the likelihood function, which is proportional to, but distinct from,

conditional probability. Recall from the earlier discussion that, in the case of conditional

probability, we are given information, in this case x = 1, that affects our knowledge of y as

expressed by p(y | x = 1). For likelihood, the first argument is held fixed and we have a

function of the second argument, L(y = a | x) = p(x | y = a); i.e., if x = 1, what is the

likelihood that y = 0? Notice for the example above that maximum likelihood occurs at the

point of maximum conditional probability; they differ by a constant of proportionality.
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