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ABSTRACT

Model Output Statistics (MOS) guidance has been the central model post-

processing approach used by the National Weather Service since the 1970s.   A

recent advancement in the use of MOS is the application of "consensus" MOS

(CMOS), an average of MOS from two or more models.  CMOS has shown

additional skill over individual MOS forecasts and has performed well compared

to humans in forecasting contests.  This study compares MOS, CMOS, and

WMOS (weighting component MOS predictions by their past performance)

forecasts of temperature and precipitation to those of the National Weather

Service (NWS) subjective forecasts.   Data from 29 locations throughout the

United States from 1 August 2003 through 1 August 2004 are used.  MOS

forecasts from the GFS (GMOS), Eta (EMOS) and NGM (NMOS) models are

included, with CMOS being a simple average of these three forecasts.  WMOS is

calculated using weights determined from a minimum variance method, with

varying training periods for each station and variable.  

Performance is analyzed at various forecast periods, by region of the U.S.,

and by time/season, as well as for periods of large daily temperature changes or

large departures from climatology.  The results show that CMOS is competitive

or superior to human forecasts at nearly all locations and that WMOS is superior

to CMOS.  Human forecasts are most skillful compared to MOS during the first

forecast day and for periods when temperatures differ greatly from climatology.

The implications of these results regarding the future role of human forecasters

are examined in the conclusions.
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1. INTRODUCTION

Since its advent in the 1970’s (Glahn and Lowry 1972), the Model Output

Statistics (MOS) approach, based on multiple linear regression, has

demonstrated an ability to improve upon the skill of raw forecast model output.

This increased accuracy is mainly the result of MOS correcting for model bias

and taking into account some of the effects of terrain and surface conditions that

are not resolved by the model. Furthermore, MOS has the added benefit of

producing probabilistic forecasts based on deterministic model output.

Over time, MOS guidance has shown steady improvement as the skill of the

underlying models have improved.   Dallavalle and Dagostaro (2004) found that

in recent years the forecasting skill of MOS has approached that of National

Weather Service (NWS) forecasters, particularly for longer projections.  In order

to allow human forecasters to work more efficiently, spending time where they

can make the greatest contributions, it is critical to understand how the skill of

human forecasters compares to objective approaches such as MOS for a wide

range of situations, locations, and parameters.  Such is the goal of this paper.  

It has long been recognized that a consensus of forecasts, be they human or

machine produced, often performs better than the component predictions.

Initially noted in academic forecasting contests with human forecasters (Sanders

1973; Bosart 1975; Gyakum 1986), these results were extended to objective

predictions by Vislocky and Fritsch (1995) who demonstrated the increased skill

from a consensus of MOS products. Subsequently, Vislocky and Fritsch (1997)

showed that a more advanced consensus MOS-- combining MOS, model output,
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and surface weather observations-- performed well in a national forecasting

competition.  

Given that the simple average of different MOS predictions (CMOS) shows

good forecast skill, and that prediction quality varies among the individual MOS

forecasts, it seems reasonable that a system of weighting the individual MOS

forecasts (termed WMOS) could show improvement over CMOS.   However,

Vislocky and Fritsch (1995), utilizing a simple weighting scheme for NGM and

LFM MOS using a year of developmental data, found “no meaningful

improvement” over simple averaging.  This paper will examine this issue further.

In addition to examining simple measures-based verification statistics such as

mean absolute error (MAE), mean squared error (MSE), and bias, it is

informative to investigate the circumstances under which a given forecast

performs well or performs poorly (Brooks and Doswell 1996; Murphy and Winkler

1987).  Statistics such as MAE do not give a complete picture of a forecast’s skill

and can be quite misleading in assessing its overall quality.  For instance, one

forecast may perform well on most occasions, giving a small MAE, but shows

poor performance during periods of large departure from climatology.  These

periods may be of most interest to some users, such as agricultural interests or

energy companies, if extreme weather conditions affect them severely.   This

paper will evaluate NWS and MOS performance for both mean and extreme

conditions.

 Section 2 describes the data and quality control used in this study.  Section 3

details the methods used in generating statistics and how WMOS is calculated.
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Results are shown in section 4, and Section 5 summarizes and interprets the

results.  

2. DATA

Daily MOS and NWS forecasts of maximum temperature (MAX-T), minimum

temperature (MIN-T) and probability of precipitation (POP) were gathered from 1

August 2003 through 1 August 2004 for 29 stations spread across the U.S. (Fig.

1).  The stations were primarily chosen to be at or near major weather forecast

offices (WFOs) and to represent a wide range of geographical areas.  Forecasts

were taken from the subjective NWS local forecasts, as well as GFS (GMOS),

Eta (EMOS), and NGM (NMOS) model output statistics. 

MOS forecasts were taken from the 0000 UTC model cycle, and NWS

subjective predictions were gathered from the early morning (~1000 UTC or

about 0400 PST) forecast.  This was done so that NWS forecasters would have

access to the 0000 UTC model output and corresponding MOS data.  Such an

approach gives some advantage to the NWS forecasters, who not only have

access to the MOS forecasts, but also have the advantage of considering 6-9 h

further development of the weather.  For each cycle, forecasts and verification

data were gathered for 48 hours, providing for the evaluation of two MAX-T

forecasts, two MIN-T forecasts, and four 12-hr POP forecasts.

During the study period, the NWS Meteorological Development Laboratory

(MDL) implemented changes to two of the MOS predictions used in the study.

On 15 December 2003, Aviation MOS was phased out and became the Global

Forecast System (GFS) MOS, or GMOS.  For this study, the output from the
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AMOS/GMOS was treated as one MOS as the model and equations are

essentially the same.  This MOS is labeled as “GMOS” throughout this paper.

The second change occurred on 17 February 2004 when EMOS equations were

changed, being derived from a higher-resolution archive of the Eta model

(Hirschberg 2004).  As with the AMOS/GMOS change, EMOS was treated as

one continuous model throughout the study.

The definitions of observed maximum and minimum temperatures used in

this study follow the NWS MOS definitions (Jensenius et al. 1993), with

maximum temperatures occurring between 7 AM through 7 PM local time and

minimum temperatures occur between 7 PM through 8 AM local time.  For

probability of precipitation (POP), two forecasts per day were considered:  0000

– 1200 UTC and 1200 – 0000 UTC.  Thus, since forecast periods out to 48

hours were considered in this study, precipitation data for four periods were

examined (day 1, 1200-0000 UTC; day 2, 0000-1200 UTC, 1200–0000 UTC,

and day 3 0000-1200 UTC).  Definitions of MAX-T, MIN-T, and POP for the

NWS subjective forecasts follow similar definitions (Chris Hill, personal

communication, 2003).

While quality control measures are implemented at the agencies from which

the data were gathered, simple range checking was also performed on the data

used in the analysis.  Temperatures below –85°F and above 140°F were

removed, POP data were required to be in the range of 0 to 100%, and

quantitative precipitation amounts used for verification had to be in the range of

0.0-in to 25.0-in for a 12-hr period.  When the differences between forecast and

observed temperatures exceeded 40°F, the corresponding data was removed
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from consideration, since differences greater than 40°F were considered an

indicator of error in either the observations or the forecasts.  A few such large

forecast-observations differences were found and were apparently due to

erroneous acquisition of forecast data.

The resulting data set was analyzed to determine the percentage of days

when all forecasts and required verification observations were available; it was

found that each station had complete data for about 85-90% of the days.  There

were many days (greater than 50%) when at least one observation and/or

forecast was missing from at least one station, making it impossible to remove a

day entirely from the analysis when all data were not present.  Therefore, only

individual station data) were removed from the analysis when missing data

occurred.  However, for each station and variable, data were required to be

complete each day, i.e., all forecasts were required to be available for analysis

for a given day.

3. METHODS

3.1 MOS Forecasts

CMOS was calculated by simply averaging GMOS, EMOS, and NMOS for

MAX-T, MIN-T, and POP.  A second CMOS (CMOS-GE) that only used GMOS

and EMOS was also calculated.  CMOS-GE was calculated in an attempt to

improve the original CMOS by eliminating the weakest member (NMOS), which

is based on a frozen model of limited horizontal resolution.  All seven forecasts

(NWS, CMOS, CMOS-GE, WMOS, GMOS, EMOS and NMOS) had to be

available for a given day, station and variable to be included in the analysis.
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WMOS was calculated using minimum variance estimated weights (Daley

1991).  Using this method, weights for each MOS forecast can be calculated

using the equation 
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where n indicates the MOS (GMOS, EMOS and NMOS), wn is the weight for

MOS n, and σ-2 is the mean square error over a set training period for MOS n.  

An optimum training period was determined for each station and variable by

calculating the minimum squared error produced by a weighted MOS using

equation (1) from 1 July 2003 through 1 July 2004.  Training periods of 10, 15,

20, 25, and 30 days were tested.  With eight variables (two MAX-T’s, two MIN-

T’s and four POP forecasts) and 29 stations, there were 232 training periods

stored.  Using these pre-determined periods, WMOS was calculated for each

station and variable for each day in the study, with weights calculated using

equation 1.  If any of the three individual MOS forecasts were missing for a given

day and variable, WMOS was not calculated.

A table of the average weights across all stations and time periods is given in

Table 1.  NMOS (GMOS) had the smallest (largest) weights of the three MOS

forecasts for all variables.    A plot showing a typical time series of weights for

MAX-T period 1 for one station (KBNA, Nashville, TN) is given in Figure 2.  The

training period for this station and variable is 30 days.  GMOS has large weights

for October and November 2003, and a more even distribution of weights is seen

for the remainder of the year.  Each model has periods with higher weights than
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the others, and weights for the three MOS forecasts generally fall between 0.2

and 0.5.

3.2 Verification

 Bias, or mean error, is defined as 
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and mean absolute error (MAE)  is defined as 
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where f is the forecast, o is the observation, and n is the total number of

forecast/observation pairs.  Precipitation observations were converted to binary

rain/no-rain data (with trace amounts treated as no-rain cases).  The Brier Score

is defined as 
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where f is the forecast probability of rain (0 to 1: 0 to 100%) and o is the

observation converted to binary rain/no-rain data.  Brier Scores range from 0.0

(perfect forecast) to 1.0 (worst possible forecast).  The resolution of the MOS

POP is 1% while the resolution of the NWS POP is generally 10%, although for

low POP events the NWS occasionally forecasts 5%.  
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To better understand the circumstances under which each forecast

performed well or poorly, a type of “distributions-based” verification was

performed (Brooks and Doswell 1996; Murphy and Winkler 1986).  Periods of

large (+/-10°F) one-day changes in observed MAX-T or MIN-T change were

examined, since such periods were expected to be challenging for the forecaster

and the models.  This study also examined periods when observed temperatures

departed significantly from climatology, since it is hypothesized that human

forecasters might have an advantage over statistical approaches during such

times.  Days showing a large departure from climatology were determined from

monthly average maximum and minimum temperature data from the National

Climatic Data Center for the 1971-2000 data period, which were then

interpolated linearly to each date.  A large departure from climatology was

defined to be +/- 20°F.  

As another measure of forecast quality, the number of days each forecast

was the most or least accurate was also determined.  A given forecast may have

low MAE for a forecast variable but is rarely the most accurate forecast.  Or a

given forecast may be most accurate on more days than other forecasts, but

least accurate on average due to infrequent large errors.  This type of

information remains hidden when considering only standard verification

measures such as the MAE.  

4. RESULTS

4.1 Temperature
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Summary MAE scores were calculated using all stations, both for MAX-T

and MIN-T, over all forecast periods (Table 2).  It can be seen that WMOS has

the lowest total MAE, followed by CMOS-GE, CMOS, NWS, GMOS, EMOS and

NMOS.  MAEs are notably lower than was found by Vislocky and Fritsch (1995)--

who reported MAEs of about 3.5°F for NWS, CMOS, limited-area fine mesh

(LFM)-based MOS, and NMOS-- presumably due to more than ten years of

model improvement.  The NWS’s National Verification Program, using data from

2003, reports similar MAEs for GMOS, the Medium Range Forecast (MRF) MOS

and NMOS to those shown here (Taylor and Stram 2003).

Figure 3 shows the distribution of absolute errors over all stations and the

entire period of the study.  Bins are 1°F in size, centered on each whole degree.

The most frequent error is 1°F, with NWS, CMOS, CMOS-GE, and WMOS

having similar distributions, and NMOS and EMOS having more larger errors.

Figure 4 shows MAE for MAX-T and MIN-T for each of the forecast periods.

Period 1, “pd1” is the day 1 MAX-T, period 2, “pd2,” is the day 2 MIN-T, period 3,

“pd3,” is the day 2 MAX-T, and period 4, “pd4,” is the day 3 MIN-T.  The sample

sizes for MAX-T pd1, MIN-T pd2, MAX-T pd3 and MIN-T pd4 are 8893, 8856,

8980, and 8947 respectively.  WMOS is the most skillful forecast, with the lowest

MAEs for all periods.  NWS has a lower MAE than both CMOS and CMOS-GE

for the period 1 MAX-T, but CMOS and CMOS-GE have similar MAEs to the

NWS for period 3 MAX-T and lower MAEs for both MIN-T’s.  The individual MOS

forecasts have higher MAEs than WMOS, NWS, CMOS and CMOS-GE for all

periods and GMOS has the lowest MAEs of the individual MOS predictions.  It
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appears that human intervention is most positive during the first period and even

then a weighted MOS is superior.  

To determine forecast skill during periods of large temperature change,

MAEs were calculated on days having a 10°F change in MAX-T or MIN-T from

the previous day.  Results of these calculations are shown in Fig.  5.  The

sample sizes for MAX-T pd1, MIN-T pd2, MAX-T pd3 and MIN-T pd4 are 1465,

1452, 1406, and 1390 respectively.  There is approximately a 1.0 to 1.5°F

increase in MAEs for the seven forecast types compared to the statistics for all

times (Fig. 4), and WMOS again has the lowest MAE for all periods except for

period 4 MIN-T, when GMOS shows the lowest MAE.  Apparently the poor

performance of EMOS and NMOS affected the combined MOS forecasts

enough to cause GMOS to show the lowest MAE score.  NWS has lower MAEs

than CMOS for all periods but similar or higher MAEs than CMOS-GE.  

 As noted in the methods section, MAEs were also calculated for days on

which observed maximum or minimum temperatures departed by more than

20°F from the daily climatological values.  Results from these calculations are

given in Fig. 6.  The sample sizes for MAX-T pd1, MIN-T pd2, MAX-T pd3 and

MIN-T pd4 are 223, 213, 173, and 170 respectively.  In general, errors are

several degrees F larger than the unfiltered data set for all forecast types (Fig.

4).  The NWS shows considerably higher skill (lower MAE) relative to the other

forecasts for the period1 MAX-T, with MAEs of about 0.5°F lower than the next

best forecast, WMOS.  For MIN-T period 2 and MAX-T period 3, CMOS-GE

performs the best; apparently the poor performance of NMOS increases MAEs

for both CMOS and WMOS.  As was seen for the one-day temperature change
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statistics, GMOS performs best out of all forecasts for MIN-T period 4.  In short,

when there are large deviations from climatology, human intervention can be

quite positive for the first period maximum temperature, but subjective

predictions drop back into the pack for longer period forecasts.

Figure 7 shows the number of days that each forecast was most accurate

(i.e., had the smallest absolute forecast error).  In Figure 7a, when two or more

forecasts possessed the same error and were most accurate, each was awarded

one day.  Consensus and weighted MOS forecasts show the fewest number of

days having the most accurate forecast for all periods and variables.  Similar

results for consensus MOS have been reported by Wilks (1998).  For period 1

MAX-T, NWS was most frequently the most accurate forecast, with about 50%

more days than CMOS, 40% more days than CMOS-GE and WMOS, and 15%

more days than the individual MOS predictions.  For the remaining periods, the

individual MOS forecasts are more comparable to the NWS, and GMOS actually

shows more days with the most accurate forecast for MIN-T period 4.  

Since errors of 1-2°F are close to the magnitude of typical instrument error

and small enough to pass without notice for most users, the calculation of the

number of days each forecast was most accurate was redone, considering errors

of less than or equal to 2°F a tie.  The results, shown in Figure 7b, are

considerably altered from Figure 7a, with the consensus MOS predictions having

more most accurate days than the NWS and the individual MOS products at all

projections.  

Figure 8a shows the number of days each forecast had the least

accurate prediction, considering ties when two or more forecast temperatures
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have the same worst forecast.  For this situation, consensus or weighted MOS

forecasts are far superior to the NWS and individual MOS predictions, with less

than half the number of days being the worst forecast.  Clearly, the averaging

used to compute these consensus/weighted forecasts tends to eliminate

extremes, so that they are seldom the least accurate forecast, relative to NWS

and the individual MOS’s (GMOS, EMOS, NMOS).  The consensus and

weighted MOS forecasts can only have a least accurate day in a “tie” situation

where all MOS forecasts agree.  NWS has considerably fewer least-accurate

forecasts than the individual MOS’s for most periods.  Thus, it appears that

human forecasters are often able to improve upon individual MOS forecasts and

thus avoid being the worst prediction. Figure 8b, shows the worst forecast results

using the relaxed definition of ties (all forecasts within 2°F of the worst forecast

are counted as having a worst prediction).  A substantial leveling of the

performance of the various predictions results from this loosened definition.  For

the first two periods, the NWS has slightly fewer poor forecasts than WMOS,

with WMOS modestly superior over the final two periods.  In short, consensus or

weighted MOS appears to gain some improvement upon the NWS on average

by greatly reducing the number of times they are the worst forecast and only

moderately reducing their frequency of being the best forecast.  

Figure 9 shows a time series of MAE for MAX-T period 1 averaged over all

stations for NWS, CMOS, and WMOS over the entire study.  The average

temperature over all stations is also shown with a dotted line.  The correlation

among the three forecast MAEs is quite evident.  WMOS has the lowest MAEs

for the most periods, followed by the NWS and CMOS.  An increase in MAEs for
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all three forecasts occurs in the 2003 –2004 cold season.  It appears than NWS

forecasters reduced some of the peak errors of the MOS guidance, particularly

during the cold period in early January 2004.

The nature of the human intervention is illustrated in Figure 10, which shows

a time series of bias for the first period maximum temperature over all stations

for NWS, CMOS, and WMOS.  As in Fig. 9, a correlation among the three

forecast biases is evident, as is a pronounced warm bias by CMOS and WMOS

throughout much of the 2003-2004 cold season.  In general, the NWS forecasts

have the least bias, particularly for the coldest periods when the MOS biases are

largest.  This presumably shows that NWS forecasters understand MOS bias

and can compensate for them to a substantial degree.  The fact that the MOS

predictions have such a large and consistent bias indicates the need to improve

the MOS approach to correct for persistent short-term bias.

Figure 11 compares the performance of the various NWS forecast offices

and two types of consensus MOS for MAX-T over the entire study period.  The

stations are sorted geographically, starting in the West and moving through the

Inter-mountain West and Southwest, the Southern Plains, the Southeast, the

Midwest, and the Northeast (see map, Fig. 1).  MAEs are typically around 2-

2.5°F and vary more spatially in the western U.S. than over the northeast U.S.

Not surprisingly, tropical MIA (Miami, FL) shows the lowest MAE, with desert-

southwest LAS (Las Vegas, NV) and PHX (Phoenix, AZ) also having low MAX-T

MAEs.  Higher MAEs are seen at high-elevation stations in the west, such as at

Missoula-MSO and Denver-DEN, where cold-air outbreaks and upslope flows

can create difficult forecasting situations.   As noted later, such stations are also
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ones for which MOS has a distinct warm bias.  CMOS appears to do worse,

compared to NWS and WMOS, at western stations such as MSO and DEN,

perhaps due to the coarse elevation in the NGM model.

Figure 12 shows biases for MAX-T, period 1, for each of the 29 individual

stations in the study for the entire study period.  A prominent feature is the

positive (warm) biases through much of the western U.S., particularly at higher

altitude stations in the Intermountain West and Southwest, with lesser positive

biases extending through the Southern Plains and into the South.  Small

negative (cool) biases are observed in much of the Midwest.  NWS forecasters

are most effective in improving on MOS for the western stations, where they

considerably reduce the warm MOS bias at the higher stations.

4.2 Precipitation

Brier Scores for the study period for the seven forecasts for all stations and

forecast periods are given in Table 3.  The scores do not vary greatly.  WMOS

and CMOS-GE show the lowest (best) scores, followed by CMOS, AMOS, NWS

and EMOS, and NMOS.  

Figure 13 shows the number of occurrences of forecasts of various

precipitation probabilities when precipitation did (left side) and did not (right side)

occur for NWS, CMOS, WMOS and GMOS during forecast period 1.  The figure

also presents normalized squared errors for the four forecasts (dashed lines),

calculated by dividing a forecast’s total squared error (forecast minus

observation) in each POP bin by the total squared error over all bins for that

forecast type.  Bins are 10% in size, centered every 10%.  The occurrence

16



distributions show that the four forecasts are very similar to each other and that

the number of POP forecasts is more uniform as probability varies when

precipitation is observed.  Specifically, there are a nearly equal number of

occurrences of POP forecasts of 40% through 100% during precipitation cases.

For non-precipitation cases, the distributions are skewed towards 0% POP, with

a nearly exponential drop towards higher forecast POPs.  In other words, the

predictions are sharpest when rain is not observed, with a strong tendency to

forecast a POP of 0 to 20%, while when rain occurs the forecasts are more wide

ranging.

The normalized squared error distributions (dashed lines in Fig. 13) show the

situations contributing to the total squared error of each forecast.  Much of the

error for the forecasts comes from forecasting POP of 10% to 50% during times

of precipitation, and POPs of 30 to 70% when precipitation does not verify.  The

former cases represent times when the forecaster (or MOS) feels there is an

elevated chance of precipitation but much uncertainty exists. 

Reliability diagrams for NWS, CMOS, WMOS and GMOS for the four

forecast periods are shown in Fig. 14.  During period 1 (Fig 14a), the predictions

are quite similar, with all exhibiting a slight underforecasting bias for lower

forecast probabilities.  At the highest forecast probabilities, there is an

overforecasting bias for all predictions, with the NWS forecasts somewhat worse

than the others.  At longer forecast periods (Fig. 14b, c and d), an “s-shaped”

pattern develops, with an overforecasting bias at the lowest forecast probabilities

and an underforecasting bias being seen at higher forecast probabilities (50-
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90%).  GMOS forecasts appear to be the most reliable, most closely matching

the 1 to 1 line.

Figure 15 shows Brier Scores for each of the four 12-hr precipitation forecast

periods.  WMOS has the highest skill (lowest Brier scores) for all periods.  There

is a substantial increase in Brier Scores with increasing forecast projection for all

forecasts.  CMOS-GE has the second best Brier Scores, followed by CMOS and

NWS and the individual MOS forecasts.  Although the NWS outperforms all

individual MOS predictions during the first period, that advantage is lost to

GMOS for all subsequent forecasts. NMOS has particularly poor Brier Scores

relative to the other forecasts.  

Figure 16 shows a time series of Brier Scores for NWS, CMOS and WMOS

averaged for all stations for period 1.  A very high correlation among the three

forecasts is seen with time, far more so than for temperature.  A general

increase in Brier Scores (decline in skill) is seen during the warm season when

convection is more prominent.

Figure 17 shows Brier Scores by station.  Low precipitation locations, such

as at LAS, PHX and ABQ, show the lowest (most skillful) Brier Scores.  MIA

shows the highest Brier Scores due to the considerable convective precipitation

at that location.  In general, NWS forecasters have poorer scores than CMOS or

WMOS, with only a handful of stations showing better human performance

compared to the objective guidance.

5. CONCLUSIONS
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This study compares the skill of NWS forecasts throughout the United States

with the predictions of individual, composite, and weighted Model Output

Statistics.  Consensus Model Output Statistics (CMOS) was calculated by simple

averaging of three individual MOS forecasts (GFS MOS-GMOS, Eta MOS-

EMOS, and NGM MOS-NMOS), while a weighted MOS (WMOS) combines

these MOS forecasts based on their previous performance.  In general, CMOS

shows equal or superior forecast performance in terms of overall MAEs and Brier

Scores to that of the NWS and of individual MOS’s.  WMOS shows superior

forecast performance to that of CMOS.  Relative to individual MOS forecasts,

NWS forecasts perform better for temperature than for precipitation, and even

GMOS outperforms NWS for precipitation for all but the 12-hr forecast.  The

removal of the weakest model (NGM MOS) from the consensus forecasts

(CMOS-GE) produces an increase in skill for some forecast variables. 

Time series of NWS and WMOS/CMOS MAEs and biases show very similar

temporal evolutions, with NWS forecaster adjustments to MOS indicating

considerable awareness of seasonal temperature biases in the MOS. Regional

variations in MAE and bias are apparent in the data, with larger errors at high

altitude stations of the western U.S.

NWS forecasters performed particularly well for short-term temperature

forecasts when there are large (+/- 20°F) departures from climatology.  During

periods of a large (+/- 10°F) one-day temperature change, CMOS and WMOS

are competitive or have lower MAEs than the NWS.  

Calculating the total number of days that each forecast predicted the most or

least accurate temperatures revealed that for a loose definition of tie forecasts

19



(forecasts within 2°F of each other considered to be equally useful) the

consensus and weighted MOS forecasts are most often the most accurate, while

the NWS predictions are slightly less frequently the least accurate.  

Reliability analysis reveals that all forecasts are generally reliable the first

day, with a tendency for overpredicting precipitation probability when the

forecasts are 80-100%.  By the second day, an “s-shaped” reliability diagram is

evident, with overprediction for low probabilities and underprediction for higher

probabilities.

An interesting, and perhaps surprising, result of this analysis is the existence

of systematic and sustained bias in some of the MOS forecasts. Often evident

for high-elevation stations and during periods of sustained cold temperatures,

such bias is an important source of NWS forecaster improvement over MOS.  It

might be expected that an improved or more sophisticated MOS, perhaps using

previous bias over some training period as a predictor, might alleviate this

systematic bias and greatly reduce the value of human intervention.

An essential finding of this paper is that it is getting increasingly difficult for

human forecasters to improve upon MOS, a simple statistical post-processing of

ever-improving model output.  Humans cannot consistently beat MOS

precipitation forecasts for virtually all of the locations and forecast projections

examined in this study, and are only superior to MOS for short-term temperature

forecasts during large excursions from climatology.  These results are consistent

with the recent results of Dallavalle and Dagostaro (2004), which showed that

during the past two years, human and MOS skill in predicting short-term (24 and

48 h) probability of precipitation and minimum temperatures have become
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virtually equivalent, with only maximum temperature providing an arena in which

human forecasts are marginally better (0.3 to 0.5°F).  

These results have significant implications for the future of forecasters in the

NWS and the transition to gridded forecast preparation/dissemination using the

new Integrated Forecast Preparation System (IFPS) system.  Currently,

forecasters spend much of their time preparing forecast grids out to seven days

using IFPS.   Using this system, NWS forecasters can start with gridded model

output, previous IFPS gridded predictions, or with MOS station forecasts spread

throughout their domain, and then merge and modify these data as part of the

forecast process.  The need for constant updating of forecast grids often leaves

little time for short-term prediction and nowcasting, a critical deficiency in NWS

operations.  As noted above, this study indicates that for all but the first 12-h it is

very difficult for forecasters to consistently beat MOS, with MOS superiority being

enhanced using a consensus or weighted MOS product.  These findings imply it

would be far better for forecasters to put less emphasis on creating forecast

grids beyond 12 hours, leaving the such predictions in most cases to bias-

corrected model output, which retrieves much of the skill increase of MOS but

with less effort (Neilley and Hanson 2004), or MOS output distributed throughout

their domain.  The NWS is currently developing a grid-based MOS that will

improve upon NCEP model output over large domains.  

If NWS forecasters cannot beat MOS at observation locations where they

can gain a deep familiarity with MOS verifications over a wide range of

conditions, they are unlikely to improve upon a model/MOS gridded forecasting

system.  Furthermore, if the relatively primitive post-processing of the current
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MOS, based on simple linear regression, is competitive or superior to subjective

predictions for 12h and beyond, one can imagine the potential of more modern

post-processing approaches such as neural networks.  An implication of the

transition to human/MOS equivalence in prediction skill for precipitation and

temperature at 12h and beyond is that humans should spend most of their time

on the short-term (0-12 h) forecasting problem, where the combination of

superior graphical interpretation and physical understanding, coupled with the

ability to communicate with the user communities, will allow profound

improvements in the accuracy and usability of forecast information.  Thus, this

paper should not be seen as an excuse to reduce the number and

responsibilities of forecasters, but rather as an indication that they should shift

their efforts to important short-term forecasting problems and user interactions

that are inadequately served today.
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Table 1.  Weights used in WMOS, averaged over all 29 stations and the entire

study period.

Variable GMOS EMOS NMOS

MAX-T pd1 0.368 0.322 0.310

MAX-T pd2 0.374 0.324 0.303

MIN-T pd1 0.373 0.334 0.294

MIN-T pd2 0.394 0.329 0.278

Precipitation, pd 1 0.332 0.372 0.279

Precipitation, pd 2 0.346 0.342 0.280

Precipitation, pd 3 0.358 0.355 0.274

Precipitation, pd 4 0.355 0.333 0.291
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Table 2: MAE for each forecast type for 1 August 2003 to 1 August 1 2004.

These averages include data for all stations, all forecast periods, and both maximum

(MAX-T) and minimum (MIN-T) temperatures.

Forecast MAE (°F)

WMOS 2.41

CMOS-GE 2.49

CMOS 2.50

NWS 2.54

GMOS 2.64

EMOS 2.84

NMOS 2.97
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Table 3. Brier Scores for 1 August 2003 – 1 August 2004 for all stations and

forecast periods.  

Forecast Brier Score

WMOS 0.091

CMOS-GE 0.091

CMOS 0.092

GMOS 0.094

NWS 0.096

EMOS 0.096

NMOS 0.105
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Fig. 1. NWS locations used in the study.
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Fig. 2. Time series of weights used for each of the three MOS forecasts in WMOS for

MAX-T period 1, Nashville, TN (KBNA) over the study period. 
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Fig. 3.  The number of occurrences of absolute errors for first period maximum

temperatures for 1 August 2003 through August 1 2004.  Bins are 1°F in size, centered

on each whole degree. 
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Fig. 4.  MAE (°F) for the seven forecasts for all stations, all time periods, 1 August

2003 – 1 August 2004.  
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Fig. 5.  MAE for each forecast during periods of large temperature change (10°F over

24-hr), 1 August 2003 – 1 August 2004.  Includes data for all stations.  
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Fig. 6. MAE for each forecast during periods of large departure (20°F) from daily

climatological values, 1 August 2003 – 1 August 2004, all stations. 
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Fig. 7.  Number of days each forecast is the most accurate, all stations, 1 August 2003

– 1 August 2004.  In (a), tie situations are counted only when the most accurate

temperatures are exactly equivalent.  In (b), tie situations are cases when the most

accurate temperatures are within 2°F of each other.  
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Fig. 8.  Number of days each forecast is the least accurate, all stations, 1 August 2003

– 1 August 2004.  In (a), tie situations are counted only when the least accurate

temperatures are exactly equivalent.  In (b), tie situations are cases when the least

accurate temperatures are within 2°F of each other.  
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Fig. 9. Time series of MAE of MAX-T for period one for all stations, NWS, CMOS and

WMOS forecasts, 1 August 2003 – 1 August 2004.  The mean temperature over all

stations is shown with a dotted line.  3-day smoothing is performed on the data.
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Fig. 10. Time series of bias in MAX-T for period one for all stations, NWS, CMOS and

WMOS forecasts, 1 August 2003 – 1 August 2004.  Mean temperature over all stations

is shown with a dotted line.  3-day smoothing is performed on the data.
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Fig. 11.  MAE, MAX-T period 1 for all stations, NWS, CMOS and WMOS forecasts, 1

August 2003 – 1 August 2004, sorted by geographic region.  
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Fig. 12.  Bias, MAX-T period 1 for all stations, NWS, CMOS and WMOS forecasts, 1

August 2003 – 1 August 2004, sorted by geographic region.  
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Fig. 13.  Number of occurrences of various forecast probabilities for precipitation and

non-precipitation events (solid lines) as well as normalized, squaredprecipitation error

(dashed lines) for all stations, NWS, CMOS, WMOS and GMOS forecasts, all periods,

1 August 2003 – 1 August 2004.  Bins are 10% in size, with data plotted in the center of

each bin.  Cases with observed  “precipitation” and “no precipitation” are found on the

left and right sides of the plot, respectively.
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Fig. 14.  Reliability diagrams for period 1 (a), period 2 (b), period 3 (c) and period 4 (d)

for NWS, CMOS, WMOS and GMOS forecasts.
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Fig. 15.  Brier Scores for the seven forecast methods for all stations, 1 August 2003 – 1

August 2004. 
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Fig. 16.  Brier Score for all stations, NWS, CMOS and WMOS forecasts, 1 August 2003

– 1 August 2004.  3-day smoothing is performed on the data. 
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Fig. 17.  Brier Score for all stations, NWS, CMOS and WMOS forecasts, 1 August 2003

– 1 August 2004, sorted by geographic region.
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