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Chapter 23

Ensemble Adaptive Data Assimilation
Techniques Applied to Land-Falling
North American Cyclones

Brian C. Ancell and Lynn A. McMurdie

23.1 Introduction

Adaptive data assimilation is becoming an increasingly important aspect of numer-
ical weather prediction. Traditional data assimilation involves combining a set
of routine observations with a first-guess field provided by a numerical weather
prediction model to produce an analysis of the atmeospheric state. These analyses
subsequently serve as the initial conditions for extended forecasts. There are three
primary modern data assimilation methods. that assimilate routine observations at
operational centers around the world and within a number of research applications:
(1) three-dimensional variational (3DVAR) systems, (2) four-dimensional varia-
tional (4DVAR) systems, and(3) ensemble Kalman filter (EnKF) systems. Each of
these techniques are based-on the assumption that the errors of both the first-guess,
or background, variables and the-observations are distributed normally, and aim to
identify the most likely atmospheric state within the statistical framework of Bayes’
Theorem (overview provided in Kalnay 2003).

Adaptive data assimilation allows the consideration of observational impact in
some way beyond the aggregate effects of a set of routine observations. There
are two primary types of adaptive data assimilation: (1) observation impact, and
(2) observation targeting. Observation impact methods estimate the relative impact
of. each assimilated observation, or any subset of assimilated observations, on
a chosen forecast metric. In turn, these techniques are able to identify which
observations are important, and which are redundant, with regard to a number
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of different forecast aspects. The benefit of observation impact schemes is that
they perform the assimilation of numerous observations only once to estimate
the impact of each observation, removing the need to perform a large number
of experiments (assimilating different observations each time) to achieve the
same goal. Observation targeting methods estimate the impact from hypothetical
observations that could be taken beyond an initial set of assimilated observations,
revealing the locations where additional observations should be taken to produce
the most benefit to a chosen forecast metric. In this way, targeting methods can be
used to indicate the optimal placement of additional observational platforms. One
attractive aspect of both observation impact and targeting approaches is that they
easily allow the consideration of a specific forecast metric that diagnoses different
sensible and high-impact weather events, such as localized wind speed or regional
precipitation amount. Thus, these methods will likely have important applications in
the future to answer a key question: what is the best way to observe the atmosphere
to improve forecasts of specific severe weather phenomena?

This chapter reviews some of the leading observation impact and targeting
methods today, gives a discussion of their evolution from older techniques, and
applies one such targeting approach within an ensemble framework to a particular
high-impact weather event: land-falling mid-latitude cyclones on the west coast of
North America. Through this application, a variety of basic observation targeting
characteristics of a specific data assimilation/forecasting system can be learned with
regard to a specific, high-impact weather event, and include (1) the most important
observation type to target, (2) whether targeting regions occur in the same location
for different events or if they span a wide range of horizontal and vertical locations,
and (3) if the relative impacts of targeted observations depend on the specific nature
of the event (e.g. deepening or decaying cyclones) for which one is trying to improve
the forecast. The application portion of this chapter addresses each of these three
characteristics for Pacific land-falling North American cyclones.

23.2 The Evolution of Adaptive Data Assimilation
Techniques

Early objective adaptive data assimilation techniques focused mostly on observa-
tion targeting, and addressed primarily the dynamical growth of forecast errors.
Adjoint sensitivity (overview provided by Errico 1997) or singular vector methods
(summarized in Kalnay 2003) were both employed to understand where analysis
errors would grow rapidly, regardless of the data assimilation procedure used in
creating the analyses. Atmospheric adjoint sensitivity was first derived in LeDimet
and Talagrand (1986), and can be represented with the following equation:

0R/0x, = M!_ % IR/0x, (23.1)

t,to
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where MEtO is the transpose of the tangent-linear operator matrix obtained by
linearizing the forcing terms of the full nonlinear forecast model equations, and
dR/0x, is the differentiated response function R with respect to the atmospheric
state at forecast time. The response function R can be any differentiable function
of the forecast state variables, and is typically chosen to diagnose a specific aspect
of the atmospheric state, such as low-level wind speed or localized precipitation
amount. The term dR/0x, exists at every model grid point and represents the
adjoint sensitivity of R with respect to the initial-time atmospheric state. For large
sensitivity values, small perturbations to the initial-time atmospheric state will result
in large perturbations to the forecast response function R. On the other hand, very
large initial-time perturbations hardly influence R where sensitivity values are very
small. In turn, adjoint sensitivity reveals regions where analysis errors would grow
rapidly to cause large errors in the forecast response function R, revealing areas
where it would be undesirable to have initial condition error.

Singular vectors (SVs) are similar to adjoint sensitivity in that they also
utilize the tangent linear propagator matrix M . Gelaro et al. (1999) provide
an overview of how SVs can be obtained by calculating the eigenvectors of the
eigenvalue/eigenvector problem:

(M

t,to

* Mio) * U= 0k U (23.2)

where u; are the orthogonal initial-time SVs of My, (or eigenvectors of MEtO * M. 10)
with growth rates o;. The SVs with-largest growth rates are the fastest growing

perturbations with respect to the Euclidean norm (ulT * ui) "2 Gelaro et al. (1999)
show how the fastest growing perturbations with respect to more sophisticated
norms, such as the dry total energy norm can be found, which adds additional
weighting terms to equation (2).and presents a new eigenvalue/eigenvector problem
that must be solved: In any case, the leading SVs reveal where errors would
grow most rapidly with regard to a specified norm, and like adjoint sensitivity
reveal areas where analysis error is undesirable with regard to the predictability
of a specified ‘aspect of the forecast state. For both adjoint sensitivity and SV
applications, perturbation growth is measured about a previously run forecast. Both
methods possess errors associated with the assumption of linear perturbation growth
and‘the-lack of a tangent-linear propagator containing the linearization of certain
complex physics that exist in the full nonlinear model.

Perhaps motivated by studies that supported the notion of key analysis errors
in regions of large adjoint sensitivity and leading SVs being most detrimental
to forecasts (Rabier et al. 1996; Klinker et al. 1998), early observation targeting
techniques were based on these locations. The basic idea was that by reducing
errors where they would grow rapidly is the most effective way to improve forecasts.
Buizza and Montani (1999), Gelaro et al. (1999), Langland et al. (1999), and Liu
and Zou (2001) all found that by ingesting targeted observations in areas of leading
SVs or large adjoint sensitivity, significant forecast error reductions (from 10 % to
50 %) were produced. These studies revealed the usefulness and value of SV and
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sensitivity-based targeting for improving forecasts, and similar methods are still
in use today with regard to high-impact weather events such as tropical cyclones
(Reynolds et al. 2009).

Early efforts were also made to account for analysis uncertainty in addition to
dynamical error growth through SV or adjoint sensitivity techniques. Taking into
account analysis uncertainty is important because if observations are taken and
assimilated in regions based on leading SVs, for example, they would have little
impact if the background uncertainty was very small because the data assimilation
system would essentially ignore the targeted observations. In turn, other locations
with less-amplifying SVs may produce larger forecast impacts if large uncettainty
and larger analysis increments were produced there, even if the dynamical error
growth rates of those perturbations were smaller. Barkmeijer et al. (1998) addressed
this issue with Hessian SVs, which are calculated with a norm based on analysis
uncertainty provided by a 3DVAR system at initial time. Bishop and Toth (1999)
developed the ensemble transform method, which accounts for uncertainty within
the framework of an ensemble.

A major step forward in observation targeting techniques came with the real-
ization that the characteristics of the data assimilation system used to assimilate
the targeted observations should be considered. Data assimilation systems not
only provide background uncertainty estimates at initial time, but also include
observation error estimates, and contain the exact. procedure that would be used
to assimilate targeted observations. In _turn, by considering both the assimilation
characteristics and a way to estimate-error growth (such as through SVs or adjoint
sensitivity), more appropriate observation targeting techniques can be formulated
that estimate more accurately how hypothetical observations would impact forecasts
in a specific assimilation system:. Both Berliner et al. (1999) and Langland (2005)
elaborate on the necessity to include error evolution dynamics, analysis uncertainty,
observation errors, and-the specific assimilation system in formulating observation
targeting schemes. Thisholistic approach to targeted observing laid the groundwork
for modern adaptive data assimilation techniques using variational and ensemble
methods.

Modern adaptive data assimilation was marked by the extension of initial
condition sensitivity into observation sensitivity, and was first described in Baker
and-Daley. (2000) in the context of a 3DVAR system. Observation sensitivity
describes not how perturbations to initial conditions would change the forecast
(as adjoint sensitivity does), but how an assimilated observation would change the
forecast, and can be written as:

dR/0dy, = dR/0xX, * 0Xo/0Ye (23.3)

where dR/dy, is the observation sensitivity, which is a function of the adjoint
sensitivity and the change to the analysis given observations (0X,/dy,). For data
assimilation systems that assume Gaussian statistics to achieve a most-likely state,
the term 0%,/ dy, simply becomes the Kalman gain matrix. Equation (23.3) is a form
of observation targeting as described in Baker and Daley (2000) as it allows one to
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estimate the impact on a response function R due to innovations (Ay,) with the
calculation:
AR = 0R /0y, * Ay, (23.4)

The only drawback of this method is that innovations associated with hypothetical
observations are not known prior to obtaining the observations, although the
technique is still very useful for understanding relative forecast impacts from a fixed
innovation anywhere in the model domain.

Langland and Baker (2004) derived the observation impact methodology directly
from (23.3) and (23.4), noting that AR is composed of a sum of terms, each/term
containing a coefficient representing a different innovation (and thus a different
observation). In this way, the contribution from each observation or any subset
of observations to AR can be easily calculated, and the impact.of different,
assimilated observations or subsets of observations can easily be produced. Con-
ceptually, this is equivalent to the analysis increment produced from.a specific set
of assimilated observations projected onto the adjoint sensitivity field, yielding an
estimate of AR. This technique is the foundation for a number of ebservation impact
studies (Langland and Baker 2004; Tremolet 2008; Gelaro and Zhu 2009; Gelaro
et al. 2010), although these studies expand the observation impact method to account
for nonlinear terms in the definition of the response function. Errico (2007) and
Gelaro et al. (2007) discuss the accuracy of the expanded higher-order methodology,
and also offer a more in depth interpretation of equation (3) noting that cross-
correlations appear in each observational term that sum to produce AR. The
important issue these studies address through the observation impact technique is to
understand which types of observations, such as those at different heights or those
associated with different observational platforms, contribute to reducing forecast
error and which do not. These results are crucial toward designing the most effective
routine observational networks for operational assimilation/forecasting systems.

Significant observation impact and targeting developments were also made
using ensemble data assimilation systems. Bishop et al. (2001) developed an
ensemble transform Kalman filter (ETKF) observation targeting method based on
the ensemble-transform technique of Bishop and Toth (1999). The ETKF method is
able to estimate the reduction in forecast variance due to hypothetical observations.
A similar method was provided by Ancell and Hakim (2007a) within an EnKF
assimilation system that also estimates the reduction in forecast variance of a chosen
response function R due to hypothetical observations. This method is based on
ensemble sensitivity which can be calculated in the following way (Ancell and
Hakim 2007a):

dR/dy, = Cov(R,y,) * D! (23.5)

where dR/dy, is a row vector representing the ensemble sensitivity of R with
respect to each analysis variable, Cov(R, y,) is a row vector representing the
covariance between the response function R and each analysis variable, and D
is a diagonal matrix containing the variance of each analysis variable. Ancell
and Hakim (2007a) explain that ensemble sensitivity allows one to estimate the
perturbation to the response function R resulting from the temporal evolution of
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an initial-time perturbation spread spatially and into other variables through the
background error covariance relationships of the ensemble (similar to (23.4)). Since
observational information is spread in a similar manner within the EnKF analysis
procedure, and since the temporal evolution of perturbations can be represented
with adjoint sensitivity, Ancell and Hakim (2007a) exploit the relationship between
ensemble and adjoint sensitivity to derive an expression for the reduction in the
variance of R due to a single observation within an EnKF:

AVariancegr = (D; * dR/dy;)?/(D; * O) (23.6)

where Dj represents the variance of a single anlaysis variable, dR/dy;iis the
ensemble sensitivity with respect to the same analysis variable, and O; represents the
observation error variance associated with a targeted observation. This caleulation
can be quickly made with respect to each observable analysis variable to reveal
the estimated variance reduction from a single additional, hypothetical observation
anywhere on the model domain. An advantage of these ensemble-based methods is
that they rely not on actual observation values, but on‘ebservation error variance
which exists prior to hypothetical observations being taken. They also allow
the estimation of forecast variance reduction of additional targeted observations
conditioned on the simultaneous assimilation of the initial targeted data. Ancell
and Hakim (2007a) also derive an ensemble version of the observation impact
developed in Langland and Baker (2004) without the use of an adjoint model.
Liu and Kalnay (2008) discuss yet-another ensemble-based observation impact
technique that requires no adjoint model.

In summary, adaptive data assimilation techniques have evolved from those that
consider only dynamical error. growth to those that consider all aspects of the
data assimilation system used to assimilate routine and targeted observations. In
turn, modern adaptive-data assimilation methods provide estimates of the impacts
from assimilated or additional hypothetical observations with regard to a specific
assimilation system:such as 3DVAR or an EnKF. It should be noted that nearly all
observation impact/targeting techniques are based on the assumption that error evo-
lution is linear over the duration of the forecast, an assumption that doesn’t always
hold. Furthermore, both modern data assimilation systems and forecasting models
are not _perfect, and present another source of error for observation impact and
targeting schemes. Langland (2005) provides an excellent review of the potential
impacts these issues cause, and discusses the performance of different adaptive data
assimilation methods during a variety of recent field programs. As computational
resources are constantly improving, investigating adaptive assimilation techniques
at very high resolution (grid spacing of a few kilometers) is now becoming possible.
In turn, a major research focus in the coming years will likely be on the application
of adaptive data assimilation systems at different scales.
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23.3 Application of EnKF Observation Targeting
to Land-Falling Mid-Latitude Cyclones

We now apply the EnKF observation targeting methodology of Ancell and
Hakim (2007a) to understand the nature of the impacts of hypothetical observations
beyond those of routine data for land-falling mid-latitude cyclones on the west coast
of North America. Land-falling cyclones routinely produce heavy precipitation
and high winds in coastal regions, and their predictability characteristics are thus
important to understand. Mass and Dotson (2010) describe some of the most intense
cyclones to strike the west coast of North America, and discuss the major.societal
impacts they produced. McMurdie and Mass (2004) and Wedam et al. (2009)
describe how short-term forecast errors by deterministic operational numerical
models can be large for storms impacting the west coast. The purpose of this
study is to demonstrate how adaptive assimilation techniques can-be applied
retrospectively to cases of land-falling cyclones as a research tool toinvestigate the
role of additional observations within a specific assimilation system and observing
network.

23.3.1 Details of the EnKF and the Forecast Model

The EnKF used in this study is an-ensemble square-root filter that assimilates
observations serially (Whitaker and Hamill 2002) and was created at the University
of Washington (Torn and Hakim 2008). The 80-member EnKF runs on a 6-h update
cycle on the modeling domain shown in Fig.23.1 at 36-km grid spacing with 37
vertical levels. The routine observations that are assimilated are cloud-track wind
(typically from 1,000.t0:4,000 total), acars aircraft wind and temperature (typically
from 1,000 to 4,000. total), radiosonde wind, temperature, and relative humidity
(typically around 1,500 total), and surface wind, temperature, and altimeter data
(typically from 7,000 to 10,000 total). The EnKF uses both Gaspari-Cohn horizontal
localization (Gaspari and Cohn 1999) and posterior inflation to address sampling
error and to avoid filter divergence (Anderson and Anderson 1999). The inflation
and<localization parameters used in this study are the same as those in Torn and
Hakim(2008) which were tuned over a similar domain to produce appropriate
spread and minimum ensemble mean errors. Boundary conditions were perturbed
around the Global Forecasting System (GFS) analyses and forecasts using the fixed
covariance perturbation method of Torn et al. (2006).

The EnKF was cycled for 6 months from 0000 UTC October 1, 2009 to 1800
UTC March 31, 2010, and extended ensemble forecasts were run to 24-h forecast
time to capture a number of wintertime land-falling cyclones. The forecast model
used here is the Advanced Research Weather Research and Forecasting (WRF-
ARW) model Version 3.0.1.1 (Skamarock et al. 2008). The WRF physics used are
the Mellor-Yamada-Janjic (MYJ) planetary boundary layer scheme (Janjic 1990,
1996, 2002), the Kain-Fritsch cumulus parameterization (Kain and Fritsch 1990,
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Fig. 23.1 The EnKF domain used in this study. The coastal zone used to identify land-falling
mid-latitude cyclones is outlined by the thick black lines and the North American coastline

1993), the Noah land surface model (Chen-and. Dudhia 2001), WRF Single-
Moment 3-class microphysics (Hong et al. 2004), the Rapid Radiative Transfer
Model (RRTM) longwave radiation.scheme (Mlawer et al. 1997), and the Dudhia
shortwave radiation scheme (Dudhia 1989).

23.3.2 Descriptionof the Response Function
and Case Selection

The response function used in these experiments to diagnose land-falling cyclones
is the average sea-level pressure in a 216km by 216 km box surrounding the 24-h
forecast ensemble mean cyclone center. Only cyclones that could be identified as
a local minimum and tracked back for the 24-h forecast period were included.
Observation targeting calculations based on the methodology of Ancell and
Hakim (2007a) are performed for every 24-h forecast cyclone that was found in
the _coastal zone (outlined in Fig.23.1) over the 6-month duration of this study.
A total of 27 storms were found to impact the coastal zone over this time, which
is a typical frequency for wintertime land-falling cyclones. However, each storm
lasted for several days and its position at the 24-h forecast time would be within the
coastal zone over several consecutive forecast runs. Therefore, targeting calculations
were made several times for each storm, resulting in a total of roughly 200 cases.
Table 23.1 characterizes each forecast run of these storms with regard to their
deepening rate and direction of coastal approach, two aspects that are analyzed
later in this section. It should be noted that it was not possible to characterize each
of the 27 individual storms as deepening or decaying as a particular event may
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Table 23.1 The total number Cyclone characteristic Number
of cyclones as well as those ;

. Deepening 37
counted as deepening or D . g7
decaying, or coming from the ccaying
north, northwest, west, From the north 4
southwest, or south in this From the northwest 19
study From the west 37

From the southwest 48
From the south 16
All cyclones 198

have forecast runs early in its lifetime when it deepens and forecast runs later.in
its lifetime when it decays. In the subsequent discussion, we will use ‘storms’ to
refer to unique cyclones (i.e. the 27 storms) and ‘cyclones’ to refer to the individual
forecast runs (i.e. one of the 200 samples).

The observation targeting calculations indicate the estimated variance reduction
to the response function due to the assimilation of hypothetical temperature, wind,
and pressure observations at analysis time beyond the assimilated routine data. In
turn, the largest variance reduction values reveal the locations where an initial-time
observation would reduce the uncertainty of the 24-h response function the most.

23.3.3 Characteristics of Observation Targeting
Jor a Single Cyclone

Figure 23.2 shows the 00-h, 12-h, 18-h, and 24-h ensemble mean forecast initialized
at 0600 UTC November 9, 2009 that depicts one particular cyclone that made
landfall on the west coast of North America. This cyclone decays from 986-hPa
central pressure in the analysis to 993-hPa central pressure when it makes landfall
on the Canadian coast at 24-h forecast time. The targeting regions for winds,
temperature, and pressure valid at analysis time are shown in Fig.23.3, and are
plotted at the'level where the maximum value of estimated variance reduction was
found. The targeting regions based on temperature and winds are localized and
mesoscale in-nature, which is generally the case for most land-falling cyclones
during the 2009/2010 winter season (not shown). The targeting regions based on
pressure-are more typically characterized by synoptic-scale features, which is the
case in Fig.23.3. The largest targeting regions based on winds and pressure for this
specific cyclone are found in the lower troposphere (from roughly 880 to 750 hPa
for winds, 930hPa for pressure), and near the tropopause (roughly 380 hPa) for
temperature. Targeting regions based on all four observation types reveal areas in
the immediate vicinity of the incipient system at analysis time, with wind and
temperature targets aloft flanking the central position of the 500-hPa geopotential
height minimum, and the primary pressure targets positioned just over the cyclone
center at the surface. Dynamically, the primary zonal and meridional wind targets
exist north and south (for zonal wind) and east and west (for meridional wind) of the
cyclone center aloft, suggesting the effects of observations there would beneficially
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Fig. 23.2 Ensemble mean forecast initialized at 0600 UTC November 9, 2009 of a decaying mid-
latitude cyclone making landfall on the North American coastline valid at (a) 00-h, (b) 12-h, (c)
18-h, and (d) 24-h. Black contours represent sea-level pressure (contour interval is 2 hPa), blue
contours represent 925-hPa temperature (contour interval is 2°C), and wind barbs represent 10-m
winds

alter the cyclonic wind field flowing around the cyclone. Magnitudes of the variance
reduction field are Targest for pressure (reaching just over 1.4 hPa?), are slightly less
for the‘wind field (reaching about 1.2 hPa?), and are smallest for the temperature
field (reaching about 0.9 hPa?).

One interesting and unique feature of the targeting regions based on pressure in
Fig.23.3 is that they are less localized and show some impact away from the center
of the system. Although values in these more distant regions are not as large as
those in the immediate vicinity of the cyclone, they clearly highlight features in the
flow at analysis time. Both the frontal trough near 40°N, —130°W and the large
oceanic region of high pressure in the western portion of the domain are shown to
be relatively important. In tune with the discussion of Ancell and Hakim (2007a),
these features are highlighted as targets because they reveal areas where analysis
increments would project substantially onto regions of large dynamical sensitivity
(a quantity estimated through adjoint sensitivity analysis). This in turn reveals a
defining characteristic of observation sensitivity over that of adjoint sensitivity—

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335



Editor's Proof

23 Ensemble Adaptive Data Assimilation Techniques Applied ... 565

1680 170 W 160 Wi50 W40 WM30 W20 W10 Wod Wad W

v

Ml soN

B0 N

"y 40 N

30N

B0 N

%i 50N

N

Fig. 23.3 Variance reduction (shaded; hPa?) of the response function estimated from a single
observation at the level of the maximum variance reduction for (a) temperature (~ 380 hPa), (b)
pressure (~ 930 hPa), (¢) zonal wind (~ 750 hPa), and (d) meridional wind (~ 880 hPa) valid at
0600 UTC November 9, 2009. Ensemble mean sea-level pressure (panel b, black contours, contour
interval is 2hPa) and 500-hPa geopotential height (panels a, ¢, and d, black contours, contour
interval is 30 m) are also shown

observation targets can exist in relatively distant areas from the regions of large 336
adjointsensitivity, sometimes indicating larger impacts than the regions of large 337
adjoint.sensitivity itself. An important consequence of this characteristic are that 338
targeting regions based on observation sensitivity can differ strongly from those 339
based on adjoint sensitivity, indicating the importance of observation sensitivity 340
for-adaptive data assimilation techniques as discussed in Sect.23.2. As pointed 341
out, Fig.23.3 shows the Pacific high surface pressure to be an important targeting 342
region, even though it is likely far upstream from the area of large adjoint sensitivity 343
(typical adjoint sensitivity fields associated with cyclones are shown by Ancell and 344
Mass 2006; Ancell and Hakim 2007a, b in similar experimental configurations). 345
Although perturbing this area of high pressure itself would do little to the 24-h 346
forecast of the land-falling cyclone, information spread during assimilation of 347
observations of the area of high pressure into regions of large dynamic sensitivity 348
downstream would act to significantly influence the forecast of the cyclone. 349
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Fig. 23.4 Level of maximum variance reduction of the response function for all cyclones for
observations of (a) temperature, (b)pressure, (¢) zonal wind, and (d) meridional wind

The fact that targeting regions-are clearly co-located with features in the flow is
likely a unique feature of ensemble targeting techniques. Following the discussion
above, the impacts from hypothetical observations within an EnKF highlight
specific flow features through their relationship to dynamically sensitive areas. In
turn, these relationships depend on how the specific features in each ensemble
member covary with the dynamically sensitive regions, and are thus strongly
linked to.the.flow dependence present in the atmospheric state at any given time.
Consequently, covariances that do not possess such flow dependence are unlikely
to capture these relationships, and targeting regions based on 3DVAR systems will
probably differ to some degree from those based on ensemble methods. This further
stresses the importance of directly accounting for the specific assimilation system
when calculating the impacts of targeted observations.

23.3.4 Characteristics of Observation Targeting
for all 2009/2010 Cyclones

Figure 23.4 represents the level where the maximum variance reduction exists for
each cyclone for pressure, temperature, and wind observations. For both temperature
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Fig. 23.5 Value of maximum variance reduction (hPa?) of the response function for all cyclones

for observations of (a) temperature, (b) pressure, (¢) zonal wind, and (d) meridional wind

and wind, the level of maximum values exists throughout the troposphere, whereas
for pressure the maximum.levels are confined to the lower half of the troposphere
below 500 hPa. Furthermore, the level of maximum variance reduction is near the
surface for pressure observations for a large number of cyclones. This suggests a
substantial benefit'might be gained by assimilating scatterometer sea-level pressure
retrievals, such as those that used to be provided by the QuickSCAT satellite, with

regard to forecasts of North American land-falling mid-latitude cyclones.

this study are independent of observation type.

Figure 23.5 depicts the maximum values of variance reduction for each cyclone,
regardless of vertical level, for each observation type. As shown in Fig.23.3, the
largest values are associated with pressure observations. For all observations,
significant variability exists with these maximum values as they range from near
zero to about 15hPa® for winds, to about 9 hPa* for temperature, and to roughly
18 hPa? for pressure. Interestingly, the maximum values for all observation types
follow the same general trend. When a cyclone exhibits large maximum variance
reduction for one type of observation (e.g. pressure), it also exhibits large maximum
variance reduction for the other types of observations (wind and temperature). This
property reveals that the largest impacts of targeted observations for the cyclones in
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Normalized Maximum Variance Reduction for Temperature Observations
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Fig. 23.6 Value of maximum variance reduction of the response function normalized by the
response function variance for all' cyclones for observations of (a) temperature, (b) pressure,
(¢) zonal wind, and (d) meridional wind

It is also useful to describe targeting impacts in terms of the estimated variance
reduction relative to the response function variance. This can be done by dividing
the maximum variance reduction values by the original response function variance
resulting in“what is referred to here as normalized variance reduction. In this
way, it is'possible to reveal cases where observations might reduce a substantial
fraction of the original response function variance even if the actual variance
reduction values themselves (as shown in Fig.23.5) are quite small. Figure23.6
shows the normalized maximum values of estimated variance reduction, and reveals
the percentage of response function variance that could be reduced through the
assimilation of observations. In general, pressure observations show an estimated
34 % variance reduction averaged over all cyclones, which is larger than both wind
(23 %) and temperature (12 %). As with the absolute values in Fig.23.5, the trend
among all variables remains the same. Figure 23.7 depicts both the normalized and
absolute maximum values of variance reduction with regard to temperature for all
cyclones. The trend for both the normalized and absolute values is generally similar
for all cyclones, although there are localized differences in the plots. For example,
the peaks in the normalized and non-normalized values between cyclone number 30
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Maximum Variance Reduction for Temperature Observations
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Fig. 23.7 Both normalized (nondimensional) and non-normalized (hPa%). values of maximum
variance reduction of the response function for all cyclones for observations of temperature.
Normalized values are multiplied by 10 for ease of comparison with non-normalized values

and 40 are offset. This indicates that whereas a larger absolute variance reduction is 4o1
estimated from temperature observations-at the peak of the non-normalized values, 402
the response function variance must be somewhat larger for that cyclone such that 403
the estimated fraction of response function variance is smaller. This indicates that 4o4
for specific cases, the impacts of EnKF targeted observations can be viewed with 405
differing degrees of importance depending on whether these impacts are determined 406
by the total or the fractionof estimated response function variance reduction. 407

Another interesting result that can be found by analyzing targeted observations 408
for many cases is how the location of the most significant targeting locations 409
vary in time. For-a specific high-impact weather event, if the targeting regions 410
remained constant over many cases, strong support would exist for taking routine 411
observations in those locations. If targeting regions were not constant, the degree 412
to which they vary would provide crucial information toward how to best design 413
an adaptive observing network. Figure 23.8 shows the mean estimated maximum 414
variance reduction calculated over all cyclones throughout the vertical. Interestingly, 415
pressure observations show roughly a constant impact throughout the troposphere. 416
This reveals that although the maximum estimated targeting values tend to occur 417
in the lower atmosphere for pressure observations (Fig.23.4), values are nearly 418
constant within the entire troposphere. In turn, there are no preferred targeting 419
locations in the vertical with regard to pressure observations to improve land-falling 420
cyclone forecasts. Wind and temperature observation targeting regions, however, 421
show two distinct peaks in the vertical. Wind targeting regions show peaks near 422
400 hPa and the surface, whereas temperature targeting regions reveal the 250-hPa 423
and the 600-hPa levels to be most important. It seems reasonable that the important 424
temperature targeting locations near 250-hPa are due to large variance near the 425
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Fig. 23.8 Value of maximum variance reduction of the response function averaged over all vertical
model levels for all cyclones for all observation types

tropopause involved with the general temperature minimum at that level. It is not 426
obvious why the 600-hPa level is important, or why wind targeting locations are 427
important near the surface and at 400 hPa. Either large ensemble-based sensitivity 428
or analysis variance values would contribute to large estimated variance reduction 429
values, and it is thus likely one of these two quantities is consistently larger 430
at the levels where the peaks are evident in Fig.23.8. In any case, these levels 431
indicated preferred locations where on average, supplemental temperature and wind 432
observations wouldbe most beneficial. 433

Figure 23.9 shows the horizontal locations of the maximum estimated variance 434
reduction for temperature observations organized by cyclones that approach the 435
coastal zone from-the northwest, west, southwest, and south. Cyclones along these 436
tracks have been binned over a 45° swath centered on each direction listed. The 437
locations are shown relative to the 24-h forecast position of the ensemble mean 43s
cyclone. It 1s clear that for all cyclone tracks there is significant variability in 439
the horizontal location of the maximum variance reduction values, varying up 440
torabout 40° both longitudinally and latitudinally. Interestingly, a number of the 441
maximum variance reduction locations occur at or downstream of the 24-h forecast 442
position of the cyclone, indicating the ability of the EnKF to spread observational 443
information upstream into regions where large dynamical sensitivity is likely to 444
exist. Nonetheless, it seems the highest priority targeting regions rarely exist in the 445
same location relative to the forecast position of the cyclone. Although there is some 446
clustering of maximum variance values to the southwest of cyclones that approach 447
from the southwest, there is still a large spread in the location of maximum variance 448
reduction such that the chance that a single location would provide consistently large 449
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Fig. 23.9 Horizontal location relative to the 24-h forecast cyclone position of the maximum
variance reduction of the response function for temperature observations for cyclones approaching
the coastal zone from the (a) northwest,(b) west, (¢) southwest, and (d) south

positive forecast benefits is unlikely. This is especially true since these locations are 450
relative to the forecast position of the cyclone, and less clustering would be evident 451
when considering the actual positions of the maximum variance reduction values 452
within the modeling domain. Very similar results are found regarding the horizontal 453
location of targeting sites for pressure and wind observations (not shown). 454

Figure 23.10depicts the average maximum variance reduction for all observation 455
types segregated by whether the cyclone was deepening or decaying over the 24-h 456
forecast period. The error bars represent the 95 % confidence interval. For each 457
observation type, deepening cyclones are associated with larger variance reduction 4ss
values on average, implying that observation targeting is more effective for deepen- 459
ing cyclones. This result is not reproduced when considering cyclone track, as the 460
average variance reduction values in Fig.23.11 are essentially indistinguishable at 461
the 95 % confidence level among different cyclone tracks. These results demonstrate 462
how targeting impacts can relate to certain characteristics of the high impact event 463
in question (in this case the deepening rate of land-falling cyclones). 464
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Fig. 23.10 Average value of the maximum variance reduction of the response function for all
observation types for both deepening (/ight purple) and decaying (dark purple) cyclones
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Fig. 23.11 Average value of the maximum variance reduction of the response function for all
observation types for cyclones approaching the North American coast from the northwest, west,
southwest, and south
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23.3.5 Summary and Concluding Remarks

Observation targets of pressure, winds, and temperature within an EnKF for
land-falling Pacific cyclones on the west coast of North America were examined
for a 6-month wintertime synoptic period in 2009/2010. These targets represented
estimates of where assimilated hypothetical observations beyond assimilated routine
observations would produce the largest reduction in the uncertainty of 24-h cyclone
forecasts around the time of landfall. It was found that temperature and wind
targets were mesoscale in nature, whereas pressure targets were more prominent
on the synoptic scale. Furthermore, pressure observations produced the largest
positive impacts on the uncertainty of cyclone forecasts of the four observation
types examined. The most important targeting regions in the vertical for winds and
temperature varied substantially throughout the troposphere when considering all
cyclones, but there was an indication of preferred regions in_the mid-.and upper-
troposphere for temperature and the upper-troposphere and near-the surface for
winds. Although the largest benefits from pressure observations existed near the
surface, similar benefits existed throughout the troposphere with no clear preferred
level. In the horizontal, there was significant variability in the most important
targeting areas, showing no clear location where a routine observation would be
consistently beneficial to land-falling cyclone forecasts. Lastly, it was found that
targeted observations are more beneficial'to forecasts of deepening cyclones than
to decaying systems as they approach<the coast. This result was not found when
considering the directions along which the cyclones track as cyclones from all
directions showed similar benefits from targeted observations.

It is important to note that the best way to view the results presented here is
in a relative sense. Specifically, these experiments have provided an understanding
of how impacts vary within an-EnKF among the different observation types of
pressure, winds, and‘temperature for land-falling mid-latitude cyclones. Whether
these results extend to other assimilation systems and different high-impact events
is unclear. Furthermore, the estimated variance reductions in this study are based
on ensemble-sensitivity, and thus the particular variance reduction values would
need to be compared with experiments that actually assimilate targeted observations
to understand.-the relationship between estimated and actual forecast impacts.
The effects of nonlinearity, inflation, and localization may all play a role in any
discrepancy. Nonetheless, this study has provided a unique perspective on how
targeting techniques might be designed to best benefit forecasts of land-falling
Pacific cyclones. Lastly, as assimilation and forecasting systems at higher and higher
resolution become more feasible in the coming years, gaining an understanding
of the effects of targeted observations across multiple scales will be an intriguing
endeavor.
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