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Abstract
Recent studies have examined tropical upper tropospheric warming by comparing coupled
atmosphere–ocean global circulation model (GCM) simulations from Phase 3 of the Coupled
Model Intercomparison Project (CMIP3) with satellite and radiosonde observations of
warming in the tropical upper troposphere relative to the lower-middle troposphere. These
studies showed that models tended to overestimate increases in static stability between the
upper and lower-middle troposphere. We revisit this issue using atmospheric GCMs with
prescribed historical sea surface temperatures (SSTs) and coupled atmosphere–ocean GCMs
that participated in the latest model intercomparison project, CMIP5. It is demonstrated that
even with historical SSTs as a boundary condition, most atmospheric models exhibit excessive
tropical upper tropospheric warming relative to the lower-middle troposphere as compared
with satellite-borne microwave sounding unit measurements. It is also shown that the results
from CMIP5 coupled atmosphere–ocean GCMs are similar to findings from CMIP3 coupled
GCMs. The apparent model-observational difference for tropical upper tropospheric warming
represents an important problem, but it is not clear whether the difference is a result of
common biases in GCMs, biases in observational datasets, or both.

Keywords: climate change, global warming, tropical vertical temperature amplification,
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1. Introduction

A robust feature of GCM simulations of the 21st century
climate is enhanced tropical upper tropospheric warming with
temperature trends increasing as a function of height until
about 200 hPa (IPCC 2007). This characteristic accounts
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for much of the lapse rate and associated water vapor
feedbacks in GCMs, which are important factors for climate
sensitivity (e.g. Soden and Held 2006). Vertical amplification
of tropical tropospheric temperature trends relative to surface
trends has been examined in a number of studies and
there is strong evidence that no serious inconsistency exists
between GCMs and observations (e.g. Fu et al 2004, Fu
and Johanson 2005, Santer et al 2005, Thorne et al 2007,
Santer et al 2008), though some studies find otherwise (e.g.
Christy et al 2007, Douglass et al 2008, Christy et al
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2010). Recent studies of temperature trend amplification in
the tropical upper troposphere relative to the lower-middle
troposphere found that coupled atmosphere–ocean models
from CMIP3 exaggerated this amplification compared to
satellite microwave sounding unit (MSU) (Fu et al 2011) and
radiosonde (Seidel et al 2012) observations.

A confounding factor in comparing coupled atmosphere–
ocean GCMs with observations is that coupled GCM’s
internally generated natural variability is not the same as
the observational record. Furthermore, historical simulations
from coupled GCMs have larger tropical tropospheric
temperature trends compared to observations since 1979 (Fu
et al 2011). Fu et al (2011) demonstrated that some of
the differences in the change of static stability between the
tropical upper and lower-middle troposphere between models
and observations are a result of an overestimation of tropical
warming in CMIP3 coupled GCM simulations. This study
utilizes CMIP5 model simulations (Taylor et al 2012) from the
Atmospheric Model Intercomparison Project (AMIP). AMIP
model simulations use observational records of sea ice and
SST evolution (e.g. Hurrell et al 2008) as boundary conditions
for atmospheric GCMs. Thus the AMIP model’s SSTs have
the same variability and trends as observations. Previous
studies have demonstrated that AMIP style runs can closely
reproduce the observed tropical tropospheric temperature
variations (Hurrell and Trenberth 1997). The use of AMIP
models allows us to closely examine simulated changes of
the vertical temperature structure in the tropical troposphere
in GCMs using the observed SST evolution.

Another advantage of the AMIP simulations is that
the spatial pattern of SST changes in the models is
constrained to the observations, which may affect tropical
tropospheric amplification. Deep convection typically occurs
over warm tropical SST regions (e.g. Wallace 1992, Johnson
and Xie 2010), which act as a heating source for the
tropical free troposphere. This large-scale heating occurs
because any anomalous heating is quickly distributed in the
tropics, which do not maintain strong horizontal temperature
gradients (e.g. Bretherton and Sobel 2003). The tropical
mean tropospheric temperature profile should roughly follow
a moist adiabat that is determined by warmest SST regions
(e.g. Sobel et al 2002). As a result, the specific pattern of
SST warming could affect the structure of the temperature
change in the tropical troposphere. Using AMIP models in
this study will ensure that the effect of the pattern of SST
changes on disagreements between models and observations
is minimized.

In this letter, observed changes in the temperature
structure of the tropical troposphere from MSU observations
are compared to changes in CMIP5 models. This work
will concentrate on GCMs constrained with observed SSTs,
referred to as AMIP models throughout this letter. We
will also update Fu et al (2011) by comparing coupled
atmosphere–ocean ‘historical’ runs from CMIP5 (Fu et al

(2011) used CMIP3 models). Coupled atmosphere–ocean
model experiments that do not constrain SSTs with observa-
tions will be referred to as coupled models. Broadly, CMIP5
refers to the most recent international GCM intercomparison

project, from which we will utilize AMIP model simulations
(model simulations constrained by observed SSTs) and
coupled models (models that fall under the ‘historical’
experiment that are not constrained by observed SSTs). The
main focus of this research is to determine if model and
observational discrepancies seen in Fu et al (2011) and Seidel
et al (2012) can be reconciled in atmospheric models using
prescribed historical SSTs (i.e. AMIP models). We show that
even by constraining atmospheric models with prescribed
SSTs, model upper tropospheric warming relative to the
lower-middle troposphere is still significantly larger than
observations for most models. We also show that the results
for CMIP5 coupled model simulations are similar to CMIP3
results (Fu et al 2011).

2. MSU datasets and model simulations

The MSU and its successor, the advanced MSU (AMSU),
have provided global temperature measurements of deep
atmospheric layers since late 1978. Because MSU and AMSU
instruments have flown onboard a number of satellites,
their temperature records have been combined into a single,
continuous, homogenized climate record. In this work, we
will utilize two datasets that have been created to remove the
influence of the stratosphere. The lower-middle tropospheric
channel, TLT, utilizes a linear combination of view angles
from the mid-tropospheric channel, T2, with a weighting
function that peaks near 600 hPa (Spencer and Christy 1992).
Another derived temperature dataset uses observations from
the lower stratospheric channel, T4, to remove the influence of
the stratosphere on T2 (Fu et al 2004, Johanson and Fu 2006).
This dataset, referred to as T24, has a weighting function
that peaks near 300 hPa and represents the upper-middle
troposphere. We will combine MSU T2 and T4 observations
to produce a T24 time series using a tropical weighting of
T24 = 1.1T2 − 0.1T4 (Johanson and Fu 2006). This study
will utilize gridded monthly TLT and T24 data to compute a
tropical mean (20◦S–20◦N) time series. We will then use the
T24–TLT trend and the ratio of T24 to TLT trends as metrics
to determine the relative temperature amplification between
the upper troposphere and the lower-middle troposphere
following Fu et al (2011). Note that T24–TLT effectively
compares the temperature of a layer between 100 and
500 hPa (with a maximum weighting near 200 hPa) with
the temperature for a layer between 500 hPa and the surface
(see figure 1 in Fu et al 2011). The T24–TLT difference
therefore represents the difference between the tropical upper
troposphere and the lower-middle troposphere. Throughout
this letter, we refer to TLT and T24 deep layer measurements
as measurements of the lower-middle and upper-middle
troposphere, respectively, since the weighting functions for
these datasets are broad. In referring to the difference between
these datasets, we use the terminology upper to lower-middle
troposphere, since the difference weighting function has a
sharper peak in the upper troposphere.

Our T24 and TLT MSU observations come from
the University of Alabama in Huntsville (UAH) and
Remote Sensing Systems (RSS). The National Oceanographic
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Figure 1. Times series of TLT monthly temperature anomalies in the tropics (20◦S–20◦N) for AMIP GCM (top) and coupled GCM
(bottom) simulations (black) and the average of RSS and UAH (red). The model spread is shaded. Many coupled GCM simulations only
extended to 2005, while AMIP runs included here extended to 2008.

and Atmospheric Administration (NOAA) also provides
observations for T2 and T4, which allow us to create a T24
time series, but NOAA does not currently produce a TLT
product. We will use RSS v3.3 (Mears and Wentz 2009a,
2009b), UAH v5.4 (Christy et al 2003) and NOAA STAR v2.0
(Zou and Wang 2011). All of the teams that produce MSU
products account for a number of non-climatic biases such as
satellite orbital decay, contamination related to the satellite
warm target calibration, and drift in the local sampling time
of the satellite (e.g. Fu and Johanson 2005, Mears and Wentz
2005, CCSP 2006, Wentz and Schabel 1998, Christy et al

2000, Po-Chedley and Fu 2012). As a result of the different
procedures for bias removal, the various teams derive different
long-term temperature trends for TLT and T24, but the relative
warming in TLT compared to T24 is consistent for both UAH
and RSS, likely because each group uses similar bias removal
procedures for each of its own channels.

We will compare GCMs in the CMIP5 archive to
MSU observations. Specifically, we will utilize models that
contributed coupled ‘historical’ simulations (44 models) and
models that contributed AMIP simulations (19 models).
Taylor et al (2012) provides more details on the CMIP5
experimental design. In both experiments, the atmospheric
composition evolves in the model to reflect natural and
anthropogenic forcings, but the atmospheric changes are not
the same across all models. For example, not all models
include emissions from volcanic eruptions. Hurrell and
Trenberth (1997) noted that even when volcanic forcings are
not included in atmospheric models, most of their influence

is captured by the SST forcing. In order to compare the
model simulations to satellite observations, we apply a
static weighting function (from RSS) to the model’s tropical
(20◦S–20◦N) monthly mean temperature profile to produce an
MSU equivalent brightness temperature time series.

3. Temperature trend difference between the
tropical upper and lower-middle troposphere

Figure 1 shows the time evolution of TLT for both coupled
and AMIP model simulations and MSU satellite observations.
The model spread is dramatically reduced in the AMIP models
owing to the prescribed observational SSTs, and there is good
agreement between the multi-model mean and the observed
average (i.e., the average of RSS and UAH) TLT time series
(r = 0.89 for 1979–2008). There is noticeable disagreement
between AMIP models and MSU observations in 1979 and
1980 (the r-value improves to 0.92 for 1981–2008). This
disagreement has been discussed in the past and it is unclear
if the disagreement is an artifact of the SST datasets used
by the AMIP models, the MSU datasets, a problem with the
models, or some combination of these factors (Hurrell and
Trenberth 1997, 1998, Christy et al 1997, 1998). To avoid
this time period, we begin our analysis in 1981, but we note
that including these years increases the disagreement between
modeled and observed measurements of the T24–TLT trend.
The coupled historical models are listed in table 1 and
the AMIP models are listed in table 2. In tables 1 and
2, we also include the model ensemble mean trend values
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Table 1. Trend values for TLT and T24 in K decade−1 from the
MSU teams and the ensemble mean of each coupled climate model
(CMIP5 historical simulations). The trends are the simple mean of
the TLT, T24, and T24–TLT trends of all of the ensemble members
for each model. The ratio is the average T24 trend divided by the
average TLT trend. The trends are for the tropics (20◦S–20◦N) over
the period 1981–2005. Trend values of T24–TLT are in units of K
decade−1 and the ratio of T24 to TLT trends are also given as a
measure of the vertical temperature trend amplification in the
tropical troposphere.

TLT T24 T24–TLT Ratio

UAH 0.118 0.129 0.011 1.09
RSS 0.203 0.222 0.020 1.10
NOAA n/a 0.265 n/a n/a

ACCESS1.0 0.316 0.375 0.059 1.19
ACCESS1.3 0.227 0.260 0.033 1.14
BCC-CSM1.1 0.274 0.317 0.043 1.16
BCC-CSM1.1 (m) 0.318 0.376 0.059 1.19
BNU-ESM 0.261 0.314 0.053 1.20
CanCM4 0.283 0.337 0.054 1.19
CanESM2 0.336 0.398 0.062 1.18
CCSM4 0.287 0.345 0.058 1.20
CESM1(BGC) 0.219 0.266 0.047 1.21
CESM1(CAM5) 0.247 0.297 0.050 1.20
CESM1(CAM5.1,FV2) 0.187 0.226 0.039 1.21
CESM1(FASTCHEM) 0.255 0.307 0.051 1.20
CESM1(WACCM) 0.279 0.332 0.053 1.19
CMCC-CM 0.236 0.291 0.054 1.23
CNRM-CM5 0.229 0.250 0.021 1.09
CSIRO-Mk3.6.0 0.241 0.284 0.043 1.18
EC-EARTH 0.240 0.272 0.032 1.13
FGOALS-g2 0.223 0.260 0.036 1.16
FGOALS-s2 0.274 0.319 0.045 1.16
FIO-ESM 0.241 0.292 0.050 1.21
GFDL-CM2.1 0.398 0.464 0.066 1.16
GFDL-CM3 0.364 0.435 0.071 1.20
GFDL-ESM2G 0.452 0.522 0.070 1.15
GFDL-ESM2M 0.319 0.374 0.055 1.17
GISS-E2-H 0.271 0.320 0.049 1.18
GISS-E2-R 0.266 0.316 0.051 1.19
HadCM3 0.290 0.342 0.052 1.18
HadGEM2-AO 0.335 0.390 0.055 1.16
HadGEM2-CC 0.245 0.284 0.039 1.16
HadGEM2-ES 0.252 0.296 0.044 1.18
INM-CM4 0.100 0.120 0.020 1.20
IPSL-CM5A-LR 0.404 0.487 0.083 1.21
IPSL-CM5A-MR 0.341 0.417 0.075 1.22
IPSL-CM5B-LR 0.287 0.356 0.069 1.24
MIROC-ESM 0.153 0.195 0.042 1.28
MIROC-ESM-CHEM 0.083 0.117 0.034 1.42
MIROC4h 0.363 0.437 0.074 1.20
MIROC5 0.190 0.227 0.037 1.20
MPI-ESM-LR 0.362 0.421 0.060 1.17
MPI-ESM-MR 0.325 0.384 0.058 1.18
MPI-ESM-P 0.296 0.348 0.052 1.18
MRI-CGCM3 0.194 0.229 0.036 1.18
NorESM1-M 0.222 0.263 0.040 1.18
NorESM1-ME 0.257 0.307 0.049 1.19

Model average 0.271 0.322 0.051 1.19

for TLT, T24 and T24–TLT, and the ratio of T24 to TLT
trends. Note that we used the time period 1981–2005 for the
coupled models, because many of the coupled models only
extend through 2005. The AMIP models used in this letter

Table 2. As in table 1 but for the MSU teams and CMIP5 AMIP
GCM simulations over the period 1981–2008.

TLT T24 T24–TLT Ratio

UAH 0.082 0.086 0.004 1.05
RSS 0.149 0.164 0.015 1.10
NOAA n/a 0.205 n/a n/a

BCC-CSM1.1 0.166 0.192 0.027 1.16
CanAM4 0.174 0.216 0.042 1.24
CCSM4 0.176 0.217 0.042 1.24
CNRM-CM5 0.184 0.209 0.025 1.14
FGOALS-s2 0.171 0.207 0.036 1.21
GFDL-HIRAM-C180 0.140 0.158 0.018 1.13
GFDL-HIRAM-C360 0.143 0.165 0.022 1.15
GISS-E2-R 0.136 0.154 0.018 1.13
HadGEM2-A 0.173 0.199 0.026 1.15
INM-CM4 0.155 0.187 0.032 1.21
IPSL-CM5A-LR 0.163 0.200 0.037 1.23
IPSL-CM5B-LR 0.167 0.203 0.037 1.22
MIROC5 0.184 0.226 0.043 1.23
MPI-ESM-LR 0.191 0.230 0.039 1.20
MPI-ESM-MR 0.190 0.225 0.035 1.19
MRI-AGCM3.2H 0.131 0.157 0.026 1.20
MRI-AGCM3.2S 0.130 0.159 0.029 1.22
MRI-CGCM3 0.171 0.209 0.038 1.22
NorESM1-M 0.174 0.213 0.039 1.22

Model average 0.164 0.196 0.032 1.19

all extend through 2008, which allows us to use the time
period 1981–2008. The AMIP models have trend values that
are in much better agreement with the observations, but the
amplification ratio (i.e. the ratio of the T24 to TLT trend) is
larger for both coupled and AMIP GCMs compared to the
MSU observations. There is only one instance in which a
model ensemble mean has a lower amplification ratio than the
MSU observations. As a whole, the trend amplification ratio
in both AMIP and coupled GCMs is ∼1.2, which represents
an increase in static stability between the tropical upper
troposphere and the lower-middle troposphere.

Since AMIP models are constrained by observed SSTs, it
is possible to closely compare the time evolution of the upper
tropospheric warming between models and observations using
the difference between the upper-middle and lower-middle
tropospheric temperatures (i.e. T24–TLT). Figure 2 shows the
trend of the difference time series between AMIP simulations
and observations for T24–TLT (i.e. (T24–TLT)AMIP −
(T24–TLT)MSU). In figure 2 we see that most models have
T24–TLT trends that significantly exceed MSU observations
with 95% confidence. The ensemble mean of every model has
larger T24–TLT trends than observations. 17 (12) of the 19
models have significantly greater T24–TLT trends than UAH
(RSS) with 95% confidence. Even though GCMs generally
have larger T24–TLT trends than MSU observations, the
GFDL and GISS models show good agreement with RSS.
Note that figure 2 in this work is different from figure
2 in Fu et al (2011) where the trends of T24–TLT were
shown. In Fu et al (2011) the trend for (T24–TLT)COUPLED
was compared with the trend for (T24–TLT)MSU using
a two-sample t-test (Lanzante 2005) to determine if the
(T24–TLT)COUPLED trend was statistically different from the
(T24–TLT)MSU trend.
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Figure 2. Trend of the differences between AMIP simulations and observations for T24–TLT over 1981–2008 for UAH (left) and RSS
(right) in the tropics (20◦S–20◦N) (i.e., the trend of (T24–TLT)AMIP − (T24–TLT)MSU). Open circles are individual AMIP model ensemble
members and the solid circles represent the ensemble mean for a given AMIP model. The error bars represent the 95% confidence interval,
including the effects of autocorrelation.

We also repeated the analysis from Fu et al (2011),
comparing the T24–TLT trends in coupled GCMs and
satellites over the period 1981–2005. As can be seen from
table 1, the results shown here for CMIP5 coupled models are
similar to the CMIP3 models in Fu et al (2011), but using the
newer CMIP5 simulations. The upper tropospheric warming
relative to the lower-middle troposphere is consistently larger
in models than observations. The T24–TLT ensemble mean
trends from all but one CMIP5 coupled GCM are significantly
larger than zero while T24–TLT trends from both UAH and
RSS are not significantly different from zero (not shown
here). Even though we use a shorter time period than Fu
et al (2011), 27 (15) of the 44 models have trends that are
significantly different from UAH (RSS) using two-sample
t-tests (Lanzante 2005). One reason that a smaller fraction of
models are significantly different from MSU data compared
to Fu et al (2011) is because we use seven fewer years,
which decreases the number of degrees of freedom and
increases the uncertainty in the trend for both models and
observations. Another reason that some coupled models are
not significantly different from observations is that coupled
models often overestimate the interannual variability, which
increases the model trend error. No model has an ensemble
mean T24–TLT trend as low as RSS or UAH (table 1).

We also note from table 1 that CMIP5 coupled GCMs
largely overestimate tropical warming just as CMIP3 models
overestimated tropical warming (Fu et al 2011).

Figure 3 demonstrates the distribution of T24 to TLT
trend ratios in AMIP simulations. AMIP models consistently
have larger ratios than MSU observations, even though
the models are constrained with observed SSTs. Of the
55 ensemble members, all have trend amplification ratios
exceeding that of UAH, and only two ensemble members
have less amplification than RSS. In the coupled historical
simulations only 5 (6) ensemble members of 185 have
amplification ratios less than UAH (RSS), and they are all
from the same model (CNRM-CM5). Figure 4 demonstrates
the scaling of interannual and decadal amplification for the
tropical upper-middle troposphere relative to the lower-middle
troposphere. The decadal amplification is the ratio of the T24
trend to the TLT trend, while the interannual amplification is
the standard deviation of the de-trended monthly T24 anomaly
time series divided by the standard deviation of the de-trended
monthly TLT anomaly time series. The decadal amplification
is a measure of the upper- to lower-middle tropospheric
temperature amplification over the past ∼3 decades, whereas
the interannual amplification is a measure of the amplification
on interannual time scales. It is striking that even though the
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Figure 3. Histogram of the ratio of the T24 trend to the TLT trend
over 1981–2008 from AMIP ensemble members in the tropics
(20◦S–20◦N). The T24 to TLT trend ratios for RSS and UAH are
shown for comparison. The T24/TLT trend ratios under the
histogram bins represent the bin center values.

Figure 4. Decadal versus interannual amplification of T24 to TLT
from both AMIP and coupled GCM simulations and MSU
observations in the tropics (20◦S–20◦N) between 1981 and 2005.
The decadal amplification is defined as the T24 trend divided by the
TLT trend. The interannual amplification is defined as the standard
deviation of the de-trended monthly T24 anomaly time series
divided by the standard deviation of the de-trended monthly TLT
anomaly values. Each cross or circle represents the ensemble mean
for each model. The mean of all models is given by the bold
symbols. Note that the MIROC-ESM-CHEM model is not
contained in this plot as it has a relatively large decadal
amplification value (table 1), likely related to biases after the Mt.
Pinatubo eruption in 1991 (Watanabe et al 2011).

interannual amplification of UAH and RSS is in the range
of the model results, both show less decadal amplification
compared to the models. Figures 3 and 4 suggest that
models consistently have greater vertical temperature trend
amplification between the tropical upper- to lower-middle
troposphere compared to satellite MSU observations, even
though the amplification in models has a large range.

Figure 5. Decadal amplification (as in figure 4) versus the annual
mean T24 temperature over 1981–2008 for AMIP models. The
relationship is statistically significant (95% confidence) and the
r-value is 0.56. The annual mean T24 temperatures are also
presented for RSS and UAH for reference. Note that much of the
focus for MSU groups has been on relative changes and not on
absolute temperature calibration (e.g. Mears et al 2011).

4. Discussion and conclusions

We have demonstrated that GCMs typically exhibit greater
tropical upper to lower-middle tropospheric amplification
compared to satellite-borne deep layer temperature observa-
tions for both coupled historical simulations and simulations
constrained with historical SSTs. For most of the AMIP
models, the relative warming in the upper troposphere
compared to the lower-middle troposphere is significantly
(95% confidence) larger than both RSS and UAH, but some
models such as GFDL and GISS demonstrate good agreement
with RSS.

There are a number of explanations for the differences
in tropical upper to lower-middle tropospheric temperature
trend amplification. The consistent positive bias (though
not always significant) in models for T24–TLT trends or
T24/TLT trend ratios as compared to both UAH and RSS
indicates that this might be a common problem amongst
models. In figure 5, we demonstrate the relationship between
the annual mean tropical (20◦S–20◦N) T24 temperature and
the ratio of the T24 trend to the TLT trend for AMIP
models over 1981–2008. The relationship between the annual
mean T24 temperature and the upper- to lower-middle
tropospheric amplification is significant (95% confidence)
with r = 0.56. One possible explanation for this relationship is
that model parameterizations (i.e. deep convection, radiation
or clouds) that influence the mean state climate have important
implications for the changes in the static stability between the
tropical upper and lower-middle troposphere. John and Soden
(2007) found that CMIP3 coupled models tended to have cold
biases in the tropical troposphere relative to reanalysis models
and AIRS satellite infrared measurements and that these
biases had little effect on the model’s lapse rate and water
vapor feedbacks on a global scale. Note that John and Soden
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(2007) considered the total column global mean tropospheric
biases. Although measuring climatological biases are outside
the scope of this work, figure 5 does suggest that the
simulated tropical upper-middle tropospheric climatology
may be related to the magnitude of lapse rate changes between
the tropical upper and lower-middle troposphere.

The effect of internal uncertainty related to the dataset
construction is large (Christy et al 2003, Zou et al 2009,
Mears et al 2011), so it is possible that the differences
between GCMs and observations are byproducts of the
merging procedure for satellite observations. It is unclear why
the interannual amplification ratio should be different from
the decadal amplification ratio, but MSU observations show
less amplification on decadal time scales (figure 4). We also
note that NOAA T24 has larger upper-middle tropospheric
warming compared to RSS and UAH (tables 1 and 2) and that
other analyses that use temperature trends derived from wind
measurements have found that historical tropical tropospheric
warming is largely consistent with GCM results (Allen and
Sherwood 2008). In general, the comparison of model and
observed trends over a relatively short time period has large
uncertainties, so some of the discrepancy noted here may also
be related to the length of the datasets.

A further possibility is that the agreement with some
models (i.e. GFDL and GISS) is real and the remaining
models exhibit too much tropical upper to lower-middle
tropospheric temperature trend amplification. With the latter
possibility, it would be important to investigate why
some atmospheric models exhibit too much amplification
given that the representation of tropical upper to lower-
middle tropospheric temperature trend amplification may be
important to model estimates of climate sensitivity. In at
least two cases, modeling groups (GFDL and NASA GISS)
used a different SST dataset (HadISST, Rayner et al 2003)
than that recommended for the CMIP5 AMIP experiment
(Held and Ken Lo 2012). The GFDL and GISS models have
tropical upper to lower-middle tropospheric amplification
characteristics that agree much better with observations,
indicating that the SST dataset may explain some of the
discrepancies noted here.

Given the importance of both models and observations, it
will be important to continue to investigate this discrepancy
between models and observations. The representation of
upper tropospheric warming in models is important to climate
sensitivity and thus future projections of anthropogenic global
warming. Furthermore, SST and MSU datasets represent vital
records for monitoring climate change, so it is important to
resolve any errors that may exist. At a more basic level,
understanding the discrepancies highlighted here may help
advance our understanding of the coupling between the
atmosphere and the ocean in the tropics and its implications
for climate change.
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