
Using	a	Lagrangian	Framework	to	Study	the	Temporal	
Evolution	of	Subtropical	Stratocumulus	PBL

Ryan	Eastman,	Robert	Wood,	Kuan Ting	O
University	of	Washington	Dept.	of	Atmospheric	Sciences,	June	2019



Subtropical	Stratocumulus	(Sc)	over	the	Ocean

• Extensive	cloud	decks	100’s	of	km	across.
• Clouds	reflect	a	great	deal	of	visible	solar	
radiation	that	would	otherwise	be	absorbed	
by	a	dark	ocean.
• Clouds	are	low	enough	to	emit	IR	at	a	
relatively	warm	temperature.
• SW	cooling	and	strong	IR	emission	combine	
to	create	a	strong	cooling	effect	in	the	
climate	system.
• Processes	driving	the	evolution	of	these	
clouds	are	poorly	resolved	by	climate	
models.

MODIS



Subtropical	Stratocumulus	(Sc)	over	the	Ocean
• Sc Cloud	decks	persist	in	eastern	ocean	basins.
• Warm	air	flows	offshore	over	cold,	upwelling	ocean	water,	creating	a	strong	
inversion	over	a	shallow	planetary	boundary	layer	(PBL).
• Mean,	large-scale	subsidence	maintains	a	warm,	clear	atmosphere	overhead.

• Clouds	decline	as	offshore	winds	blow	the	boundary	layer	to	the	west	
and	toward	the	equator	over	warmer	sea	surface	temperatures	(SSTs).



Mean	Evolution	of	the	Subtropical	Boundary	Layer
• Near	the	coast	(a,	right),	clouds	are	organized	in	shallow,	unbroken	decks,	
with	cloud	top	cooling	driving	a	circulation	from	cloud	top	to	sea	surface.
• Farther	offshore	(b),	the	cloud	deck	becomes	broken,	the	boundary	layer	
deepens,	and	the	circulation	from	cloud	top	‘decouples’	from	the	surface.

Wood,	2012
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Subtropical	Stratocumulus	(Sc)	over	the	Ocean
• We	want	to	know:	How	do	these	cloud	decks	
evolve?	What	factors	control	their	variability	
in	space	and	time?
• Project	Outline:
• Review	a	prior	study,	which	motivates	study	of	
PBL	depth,	as	it	was	shown	to	significantly	
modify	cloud	evolution.
• New	data	product	using	the	A-Train	satellites	that	
are	made	to	study	time	evolution	of	the	
boundary	layer.
• Climatologiesand	correlational	studies	using	this	
PBL	product.
• A	more	comprehensive	Lagrangian	study	
showing	PBL	depth	sensitivity	to	several	
predictor	variables.

MODIS



Structure	of	and	Motivation	for	a	Lagrangian	PBL	Study
• Prior	work	(Eastman	and	Wood,	2016)	
sought	to	test	whether	raining	Sc was	
more	prone	to	breakup.
• Structure:
• Identify	raining	and	non-raining	Sc
samples	along	the	CloudSat/CALIPSO	
satellite	track.
• Use	reanalysis	winds	to	generate	2-D	
trajectories	at	925	hPa to	track	those	
samples	over	time.
• Use	the	A-Train	satellites	and	sensors	
(MODIS,	AMSR/E,	CloudSat,	and	CALIPSO)	
to	quantify	cloud	and	PBL	properties.



NASA	A-Train	Satellites
• Afternoon-Train	satellites	fly	together	as	a	constellation,	sampling	the	same	
scenes	with	a	variety	of	sensors	along	a	sun-synchronous	polar	orbit,	crossing	
the	equator	at	1:30	and	13:30.
• Sensors	&	Satellites:
• CloudSat:	Cloud	profiling	radar	capable	of	detecting	clouds	and	drizzle.
• CALIPSO:	Cloud	Aerosol	
Lidar,	observing	cloud	&	
aerosol	profiles.

• MODIS:	Spectroradiometer
observing	outgoing	visible	
and	IR,	observing	clouds	and	
cloud	properties.

• AMSR/E:	Passive	microwave	
sensor	observing	moisture	
profiles	and	cloud	liquid
water.



Structure	of	and	
Motivation	for	a	
Lagrangian	PBL	
Study
• All	A-Train	sensors	
observe	the	0-hour	
clouds	within	a	
100km	radius.
• Instruments	with	a	
wide	swath	(MODIS	
and	AMSR/E)	observe	
the	clouds	as	they	
evolve	downwind.



Early	Lagrangian	Results	Suggested	that	
Rain	Leads	to	Sc Breakup	

• Results	from	Eastman	and	Wood	(2016).
• 40,000	Trajectories	were	run	in	our	four	subtropical	regions	for	years	
2007	&	2008.
• Trajectories	were	grouped	by	whether	or	not	they	were	precipitating,	
as	seen	by	CloudSat	at	0-hours.
• Precipitating	clouds	were	initially	shown	to	break	up	more	readily	
than	non-precipitating.
• This	design	failed	to	account	for	other	variables	covaryingwith	
precipitation,	most	notably	the	depth	of	the	boundary	layer,	which	is	
often	deeper	when	there	is	precipitation.



Creating	a	PBL	depth	product
• CALIPSO	PBL	product	relies	on	the	assumption	
that	boundary	layer	cloud	tops	rest	just	below	
the	inversion,	using	‘Vertical	Feature	Mask’.
• For	a	shallow,	unbroken	Sc deck,	this	is	a	
straighforward assumption	(a)	for	a	200	km	
sample.
• For	a	deeper,	more	complicated	PBL	(b),	we	
develop	an	algorithm	based	on	the	frequency	
distribution	of	LIDAR-retrieved	cloud	tops	(c),	
looking	for	the	highest-altitude	peak	in	the	
distribution.
• Limited	to	just	the	LIDAR	curtain,	though,	not	
to	a	2-D	swath	needed	for	sampling	at	later	
times.

Eastm
an	&

	W
ood	(2016,	Figure	3)



Better	Results	Suggested	that	Rain	May	Not	Lead	to	
Sc Breakup

• After	some	time	and	constructive	feedback,	we	designed	an	analysis	that	
compared	the	evolution	of	precipitating	and	non-precipitating	
trajectories	within	bins	of	constant	PBL	depth.
• Deeper	boundary	layers	(as	seen	by	CALIPSO)	were	shown	to	precipitate	(as	seen	
by	CloudSat)	significantly	more	than	shallower	boundary	layers.

• So	was	the	precipitation	to	blame	for	cloud	declines,	or	was	the	depth	of	the	
PBL?

• After	accounting	for	PBL	depth,	the	effects	of	precipitation	appeared	less	
significant,	while	the	effects	of	PBL	depth	appeared	stronger,	with	deep	
boundary	layers	more	prone	to	anomalous	cloud	decline	compared	to	
shallow	boundary	layers.



Better	Results	Suggested	that	Rain	May	Not	Lead	to	
Sc Breakup

• Motivates	the	question:	What	controls	PBL	depth,	if	it’s	such	an	
important	driver	of	cloud	evolution?		And	how	to	study	the	time	
evolution	of	the	PBL?
• Requires	the	creation	of	a	new	data	product	capable	of	studying	the	
time-evolution	of	the	PBL:



Creating	a	PBL	Depth	Product	for	a	Lagrangian	Analysis
• PBL	depth	can	be	estimated	using	the	
temperature	difference	(𝚫T)	between	the	
sea	surface	and	cloud	tops.
• Sea	surface	temperatures	(SSTs)	are	sourced	
from	the	ERA-Interim.
• Cloud	top	temperatures	(CTTs)	come	from	
MODIS	L3	(1x1	lat/lon grid)	histograms,	
showing	the	frequency	distribution	of	CTT	for	
all	sub-grid	pixels	within	an	L3	grid	box.

• Two	issues:	
• 1)	Lapse	rates	(𝚫T/𝚫Z)	must	be	calculated.
• 2)	In	broken	cloud	scenes,	only	a	fraction	of	
CTT	pixels	sit	at	the	inversion	base.

MODIS	Cloud	Top	Temperature

Reanalysis	Sea	Surface	Temperature

𝚫T



Parameterized	Lapse	Rate	is	
Assumed
• The	lapse	rate	is	assumed	to	be	
dependent	on	PBL	depth,	with	a	
steeper	lapse	rate	(more	cooling	with	
height)	for	shallower	PBLs.
• Lapse	rate	is	derived	from	Wood	&	
Bretherton	(2004)	as	shown	by	the	
curve	on	the	top	figure.
• PBL	depth	is	then	calculated	as	a	
function	of	𝚫T,	as	shown	by	the	blue	
curve.

Wood	&	Bretherton	 (2004,	Figure	4)



Fraction	of	Clouds	at	the	Inversion	Base
• In	broken	cloud	scenes,	many	cloud	tops	are	not	at	the	top	of	the	PBL.
• An	iterative	routine	is	developed	to	estimate	the	%	of	CTT	pixels	that	sit	at	
the	inversion	base	for	bins	of	%	cloud	cover:
• Done	for	a	subset	of	L3	grid	boxes	that	are	sampled	by	MODIS	and	CALIPSO.
• Compare	CALIPSO	and	MODIS-derived	PBL	depths	for	the	same	scene.
• If	the	MODIS	PBL	is	too	high	or	low,	modify	the	assumption	about	the	number	of	
CTT	pixels	at	the	PBL	top,	then	iterate	until	MODIS	and	CALIPSO	agree.
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CALIPSO	vs.	MODIS	PBL
• Our	MODIS	PBL	estimate	
compares	reasonably	well	with	
the	CALIPSO	training	dataset.
• Regions	with	high	clouds	are	
excluded	from	MODIS	PBL.
• Correlations	are	significant	and	
positive,	and	best	with	more	cloud	
cover.

June	16,	2008



Comparison	with	COSMIC	GPS	PBL	
• Comparison	with	an	independent	PBL	
product,	by	Kuan Ting	(Andy)	O.
• COSMIC	GPS	PBL	is	determined	by	
radio	occultation	between	low	earth	
orbiting	satellites	and	GPS	satellites.
• The	line-of	site	radio	communication	
between	two	satellites	is	modified	by	
density	changes	in	the	atmosphere,	
usually	in	the	form	of	a	strong	
hydrolapse or	inversion.



Comparison	with	
COSMIC	GPS	PBL	

• Monthly	mean	PBL	depth	
values	are	shown	as	time	series	
from	2007-2010.
• Correlation	is	strong	between	
COSMIC	and	MODIS	PBL	
depths.
• Temporal	and	spatial	variation	
appear	reasonable	for	our	
MODIS	PBL	product,	and	are	
independently	verified,	thanks	
Andy!

Adapted	from	Eastman	et	al.	(2017,	Fig	1)



Climatology	of	the	Subtropical	PBL,	2007-2010
• The	annual	mean	
climatologies of	PBL	
depth	match	prior	
assumptions	and	
models	somewhat	
well.
• The	PBL	tends	to	be	
very	shallow	near	the	
continents	and	
deepens	offshore.
• The	mean	wind	fields	
(arrows)	show	the	
flow	going	across	the	
PBL	gradient	(b	&	c).

Adapted	from	Eastman	et	al.	(2017,	Fig	2)



Seasonal	Cycle	of	the	
Eastern	Subtropical	PBL
• The	PBL	tends	to	vary	in	depth	
throughout	the	year	(black	line),	by	
about	300-400	meters	on	average.
• The	cycle	in	PBL	depth	matches	the	
annual	cycle	in	lower	tropospheric	
stability	(LTS),	defined	as	the	difference	in	
𝜃 between	700	and	1000	hPa.
• High	stability	is	associated	with	a	shallow	
PBL.

• Cloud	cover	tends	to	vary	in	
opposition	to	SST,	with	greater	cloud	
cover	associated	with	a	cool	sea	
surface.

Adapted	from	Eastman	et	al.	(2017,	Fig	5)



The	PBL	and	LTS,	
Southeast	Atlantic
• The	regional	average	
annual	cycle	of	PBL	depth	
varies	in	opposition	to	LTS.
• If	LTS	is	the	primary	driver	
of	PBL	depth,	then	this	
should	be	apparent	on	all	
time	and	spatial	scales.
• Correlations	between	daily	
values	of	LTS	and	PBL	
depth	are	shown	for	each	
1x1	L3	box	in	the	SE	
Atlantic.



The	PBL	and	LTS,	
Southeast	Atlantic
• The	map	of	r	values	shows	
an	inconsistent	pattern,	
with	negative	correlations	
near	the	coast	and	
upwind,	but	weak	
correlations	downwind.
• We	will	compare	the	
relationship	between	LTS	
and	PBL	depth	in	these	
two	regions.



LTS	and	PBL	
Depth	Upwind
• Time	series	of	PBL	depth	and	
LTS	are	broken	into	two	
types:
• Seasonal	scale,	long-term	
variability	is	shown	by	the	
blue	and	red	curves	fit	to	the	
time	series	(polynomial).
• Daily,	deseasonalized
’residuals’	are	calculated	by	
subtracting	the	seasonal	scale	
variability	from	the	time	
series.

• Seasonal	scale	variations	
compare	as	expected	
upwind.

Adapted	from
	Eastm

an	et	al.	2017,	Figure	8



LTS	and	PBL	
Depth	Downwind
• Seasonal	scale	variations	
again	compare	as	expected	
downwind.
• In	both	upwind	and	
downwind	boxes,	the	
seasonal-scale	variations	of	
PBL	depth	and	LTS	are	
anticorrelated.
• What	about	the	residual,	
daily-scale	variability

Adapted	from
	Eastm

an	et	al.	2017,	Figure	8



LTS	and	PBL	Depth	
on	Daily	Timescales

• Scatterplots	between	residual	
(deseasonalized)	time	series	of	PBL	
depth	and	LTS.
• Correlations	remain	negative	upwind.
• Correlation	flips	downwind,	now	
showing	short-term	variability	to	be	
positively	correlated.
• On	daily	timescales,	the	variability	of	
PBL	depth	is	not	consistently	
explained	by	the	strength	of	the	
inversion.

Adapted	from
	Eastm

an	et	al.	2017,	Figure	8



Daily	Versus	Seasonal	
Timescales

• A	similar	analysis	is	
carried	out	for	all	1x1	L3	
boxes.
• Here	we	show	that	the	
seasonal	scale	time	series	
of	LTS	and	PBL	depth	are	
uniformly	anticorrelated,	
except	very	near	the	
coast.

Adapted	from	Eastman	et	al.	2017,	Figure	9c



Daily	Versus	Seasonal	
Timescales
• Daily-scale	time	series	of	
LTS	and	PBL	depth	are	not	
uniformly	correlated.
• LTS	and	PBL	depth	remain	
anticorrelated upwind.
• Downwind,	the	
relationship	flips.

• If	LTS	is	not	consistently	
driving	day-to-day	
variability	of	PBL	depth,	
what	is,	and	how	do	we	
show	it?

Adapted	from	Eastman	et	al.	2017,	Figure	10c



Motivation	for	a	Comprehensive	Lagrangian	Study

• Correlation	studies	are	limited	by	a	few	factors:
• Causality,	geographic	disparities	when	using	lag	correlations.
• Covariance	between	predictor	variables.
• Differences	in	time	scales,	effect	follows	cause	at	different	lag	times	for	
different	predictors.

• A	parcel-tracking	Lagrangian	study	can	resolve	much	of	this.
• Trajectories	can	be	grouped	by	differences	in	predictor	variables,	then	their	
cloud	and	PBL	evolutions	can	be	compared.
• The	response	to	a	predictor	variable	can	be	seen	at	several	lag	times	as	
parcels	advect to	different	regions.
• We	can	control	for	covariance	between	predictors	by	looking	at	subsets	of	
trajectories	where	a	chosen	predictor	remains	constant.



A	4-Year	Lagrangian	Study	of	PBL	Evolution
• ~160,000	trajectories	are	run	in	the	subtropics	for	years	2007-2010.
• Driven	forward	by	ERA-Interim	isobaric	winds	at	925	hPa for	48	hours.
• Trajectories	begin	along	the	CloudSat/CALIPSO	track	to	quantify	
precipitation	at	0	hours.



Structure	of	a	
Lagrangian	PBL	
Study
• Same	as	our	earlier	2016	
paper,	just	bigger.
• CloudSat,	CALIPSO,	
MODIS	and	AMSR/E	
observe	our	trajectory	at	
0	hours.
• Instruments	with	a	wide	
swath	(MODIS	and	
AMSR/E)	observe	the	
clouds	as	they	evolve	
downwind	at	0-48	hours.



Lagrangian	Deepening	Rates
• With	~160,000	trajectories,	we	can	look	at	the	mean	deepening	rate	
along	all	trajectories.
• Mean	deepening	is	defined	here	as	the	mean	change	in	PBL	depth	
over	a	complete	diurnal	cycle	in	mm/second.



Lagrangian	Deepening	
Rates
• The	mean	deepening	
rate	for	each	
trajectory	is	assigned	
to	its	midpoint	then	all	
rates	are	gridded	and	
contoured.
• Also	shown	are	SST	
(gray)	and	700	hPa
subsidence	(colored).
• Regions	of	intense	
deepening	stand	out.
• Often	coincide	with	
decline	in	subsidence.	

Eastman	et	al.	(2017,	Fig	11)



Lagrangian	Deepening	
Rates
• Regions	of	intense	or	
rapid	deepening	
shown	in	white	boxes.
• Also	shown	are	LWP	
(gray)	and	LTS	
(colored).
• In	SE	Pacific,	LWP	peak	
is	situated	just	
downwind	of	regions	
of	intense	deepening.
• What	is	happening	in	
these	regions?

Eastman	et	al.	(2017,	Fig	12)



Regions	of	Rapid	
Deepening
• We	compare	the	
mean	evolution	of	
cloud	&	PBL	variables	
for	two	composite	
trajectories.
• Darker	lines:	
trajectories	pass	
through	rapid	
deepening	regions.
• Lighter	lines:	Start	on	
eastern	half,	but	do	
not	pass	through	
rapid	deepening	
regions.

Eastm
an	et	al.	(2017,	Figure	13)

Darker:	Rapid	Deepening



Regions	of	Rapid	
Deepening
• Variables	internal	to	
the	clouds	and	PBL	
show	significant	
differences	in	regions	
of	rapid	deepening.
• PBL	starts	shallower,	
ends	deeper.
• Cloud	cover	remains	
higher
• LWP	spikes	before	
declining
• Nd is	greater
• Less	rain	at	0-hours

Eastm
an	et	al.	(2017,	Figure	13)

Darker:	Rapid	Deepening
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Regions	of	Rapid	
Deepening
• Variables	external	to	
the	PBL	also	show	
significant	differences	
in	regions	of	rapid	
deepening.
• SST	starts	lower,	but	
increases	more.
• LTS	is	greater.
• Subsidence	declines	
more	initially.
• 700	hPa specific	
humidity	is	lower.
• 700hPa	temp	warms.

Eastm
an	et	al.	(2017,	Figure	13)

Darker:	Rapid	Deepening
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Challenges	when	Comparing	Predictors
• All	predictors	show	significant	differences	in	rapidly	deepening	regions	
compared	to	surroundings,	how	to	determine	what’s	important?
• How	to	objectively	compare	sets	of	trajectories	separated	by	their	initial	
conditions.
• No	two	trajectories	are	identical,	so	how	can	they	be	compared	when	there	are	
geographical	differences?	(ie.	Different	start,	end	points,	different	length).
• Converting	to	an	anomaly	framework	allows	us	for	a	more	objective	comparison.
• Anomalies	are	taken	based	on	a	100-day	running	mean	centered	on	each	day,	for	
day	and	night	separately.

• How	to	define	a	null	hypothesis	when	comparing	time	evolution	of	
trajectories?
• If	we	subset	trajectories	by	a	predictor	variable,	their	initial	values	of	cloud	cover	
and	PBL	depth	will	differ	between	the	sets.



Comparing	Lagrangian	Change
• On	average,	anomalous	PBL	
depth	values	tend	to	regress	
to	zero.
• This	‘Regression	to	the	mean’	is	
well	modeled	by	a	red	noise	
assumption.	(Eastman	et	al.	
2016)
• Larger	anomalies	regress	more.

• When	comparing	sets	of	
trajectories	with	different	
mean	PBL	depths,	this	red	
noise	behavior	must	be	
accounted	for.
• 𝚫PBL	=	𝚫PBL(red)+	𝚫PBL(env)

Eastman	et	al.	(2017,	Figure	14)



Comparing	Lagrangian	Change
• To	compare	anomalous	
environmental	forcing	
caused	by	predictor	
variables,	we	must	calculate	
residual	changes	in	PBL	
depth.
• 𝚫PBL(residual)	=	

𝚫PBL(obs)	- 𝚫PBL(red)
• Residual	𝚫PBL	values	can	
now	be	compared	between	
two	sets	of	trajectories	with	
the	effects	of	red	noise	
removed.

Eastman	et	al.	(2017,	Figure	14)

Weak	InversionStrong	 Inversion



Comparing	Variables
• In	order	to	compare	the	power	of	different	predictors,	we	must	first	
standardize	the	predictor	variables	by	dividing	by	the	standard	
deviation	(𝜎).
• Now	the	effects	of	a	1𝜎 anomaly	in	one	predictor	can	be	compared	to	a	1𝜎
anomaly	in	another.
• To	do	this,	we	create	sets	of	trajectories	binned	by	the	standard	deviation	of	
each	predictor.



Comparing	Variables
• Residual	changes	in	
PBL	depth	anomalies	
are	then	calculated	
for	each	𝜎 bin	of	our	
predictor	variable
• Anomalously	high	LTS	
is	associated	with	
anomalous	
Lagrangian	shallowing	
of	the	PBL
• What	about	
confounding	
variables?



Confounding	Variables
• The	LTS-PBL	
relationship	could	be	
skewed	by	other	
variables.
• LTS	and	q700	
anomalies	are	
anticorrelated.
• The	free	lower	
troposphere	is	more	
humid	when	LTS	is	
low	(r	=	-0.26)

• We	can	further	
subset	our	
trajectories	into	bins	
of	constant	q700’



Confounding	Variables
• After	subsetting by	0-
hour	q700’,	we	can	
repeat	the	prior	
analysis	for	bins	of	
LTS’
• The	value	of	the	slope	
in	frame	c	changes	
significantly.
• After	controlling	for	
q700’,	the	effects	of	
LTS’	appear	nearly	
twice	as	strong.
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Confounding	Variables
• The	mean	slope	of	
Residual	𝚫PBL’	versus	LTS’	
for	the	four	bins	of	
constant	q700’	is	nearly	
twice	as	steep	as	the	slope	
without	controlling	for	
q700’.
• Error	bounds	are	created	
based	on	the	spread	of	the	
slopes.
• This	analysis	is	repeated	
for	all	predictor	variables.



Confounding	Variables
• Perform	the	prior	analysis	
for	an	entire	list	of	
predictor	variables.
• Create	bounds	based	on	
the	range	of	slopes	
generated	by	holding	each	
predictor	constant	while	
testing	the	power	of	LTS’.
• This	example	shows	very	
wide	bounds,	indicating	a	
messy	relationship	
between	LTS	and	PBL	
deepening	with	many	
confounding	variables.



Re
su
lts



How	is	free-tropospheric	humidity	acting	on	the	
PBL?

• Humid	layers	above	the	PBL	can	modify	the	radiative	balance	at	cloud	top,	
limiting	cloud	top	cooling	if	too	much	IR	is	directed	downward.
• Increased	water	vapor	entraining	into	the	cloud	can	also	modify	cloud	top	
cooling	by	reducing	evaporation	at	cloud	top,	weakening	the	lapse	rate	within	
the	cloud.

Wood,	2012



How	is	free-tropospheric	humidity	acting	on	the	
PBL?

• We	can	use	this	Lagrangian	analysis	along	with	the	reanalysis	profiles	of	
free	tropospheric	specific	humidity	to	test	which	of	these	mechanisms	is	
driving	the	deepening	of	the	PBL.

Wood,	2012



Measures	of	
Humidity
• In	order	to	test	these	
mechanisms	we	can	
create	two	quantities	of	
humidity	using	ERA-I:
• Entraining	humidity,	which	
is	in	contact	with	the	PBL	
top.
• Radiating	humidity,	
consisting	of	the	model	
layers	above	the	
entraining	layer,	but	below	
700	hPa.

• Compare	their	effects	
with	and	without	holding	
the	other	constant.

Eastman	&	Wood	 (2018,	Figure	2)



Lagrangian	Effects	
of	Humidity
• We	test	the	effects	of	our	
two	measures	of	
humidity,	which	are	
positively	correlated,	on	
24-hour	Lagrangian	cloud	
cover	and	PBL	evolution.
• In	each	frame	the	power	
of	one	humidity	measure	
is	tested	as	a	predictor	
without	(blue)	and	with	
(black)	the	other	
humidity	measure	held	
constant.

Adapted	from	Eastman	&	Wood	 (2018,	Figures	10,	11)



Lagrangian	Effects	
of	Humidity
• Lagrangian	Cloud	
Cover	evolution	is	
more	affected	by	
entraining	water	
vapor.
• Lagrangian	PBL	
evolution	is	much	
more	affected	by	the	
radiating	effects	of	
overlying	humidity.

Adapted	from	Eastman	&	Wood	 (2018,	Figures	10,	11)



Conclusions
• Lagrangian	PBL	deepening	is	geographically	irregular,	not	a	smooth	
process	as	is	often	simplified	in	current	models
• Although	the	seasonal	cycle	of	PBL	depth	correlates	strongly	with	
inversion	strength,	a	closer	look	shows	that	inversion	strength	is	a	
dubious	predictor	with	irregularities	at	different	time	scales	and	with	
many	confounding	variables	affecting	the	relationship.
• Many	other	variables	drive	Lagrangian	changes	in	PBL	depth:	

• Humidity	above	the	PBL	(strongest),	𝚫subsidence,	𝚫SST,	precipitation,	and	Nd.
• Humidity	can	modify	the	PBL	through	radiative	and	evaporative	effects.

• The	radiative	effects	dominate	PBL	deepening	while	evaporative	
effects	dominate	cloud	evolution.
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Lagrangian	Effects	
of	Humidity,	a	
Simpler	Perspective
• Trajectories	are	
composited	into	four	
groups,	based	on	mean
48-hr	humidity	anomalies.
• The	Lagrangian	evolution	
of	PBL’	is	compared	
between	the	four.
• The	PBL	is	deeper	and	
stays	deep	when	radiating	
humidity	is	low,	especially	
when	entraining	humidity	
is	also	low.

Eastman	&	Wood	 (2018,	Figure	12)



Lagrangian	Effects	
of	Humidity,	a	
Simpler	Perspective
• The	Lagrangian	evolution	
of	CC’	is	also	compared	
between	the	four	groups.
• Cloud	cover	is	greater	
and	tends	to	increase	
when	entraining	
humidity	is	high,	vice-
versa	when	humidity	is	
low.

Eastman	&	Wood	 (2018,	Figure	13)


