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ABSTRACT

Collocated CloudSat rain rates and Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
89-GHz brightness temperature Ty, retrievals allow for the development of an algorithm to estimate light,
warm rain statistics as a function of AMSR-E 89-GHz T, for shallow marine clouds. Four statistics are cal-
culated from CloudSat rainfall rate estimates within each 4 km 3 6 km T, pixel sampled by both sensors: the
probability of rainfall, the mean rain rate, the mean rate when raining, and the maximum rain rate. Obser-
vations with overlying cold clouds are removed from the analysis. To account for confounding variables that
modify Ty, curves are fit to the mean relationships between Ty, and these four statistics within bins of constant
column-integrated water vapor from AMSR-E, and sea surface temperature and wind speed from reanalysis
grids. The coefficients that define these curves are then applied to all available AMSR-E Ty, retrievals to
estimate rain rate throughout the eastern subtropical oceans. A preliminary analysis shows strong agreement
between AMSR-E rain rates and the CloudSat training dataset. Comparison with an existing microwave
precipitation product shows that the new statistical product has an improved sensitivity to light rain. A cli-
matology for the year 2007 shows that precipitation rates tend to be heavier where the sea surface is warmer

and that rain is most frequent where stratocumulus transitions to trade cumulus in the subtropics.

1. Introduction

Subtropical marine stratocumulus clouds (Sc) act to
cool Earth’s climate because of their broad spatial ex-
tent, high albedo, warm cloud-top temperatures, and
location near the equator (Randall et al. 1984; Slingo
1990; Hartmann et al. 1992). A significant amount of
study has been invested in determining which environ-
mental controls have the greatest effect on the temporal
evolution of these clouds (Mauger and Norris 2010;
Sandu and Stevens 2011; Eastman and Wood 2016;
Burleyson and Yuter 2015a,b). Past studies suggest
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that precipitation often coincides with a change in
cellular structure, with heavy drizzle seen on the
boundary between closed cells and neighboring open
cells (Stevens et al. 1998, 2005; Comstock et al. 2005;
Wood et al. 2008, 2011a). In this context, closed strato-
cumulus cells resemble a honeycomb with broad indi-
vidual cloud elements separated by relatively small clear
regions, while open cells are characterized by fields of
shallow convective cores surrounded by thin, detraining
clouds with relatively broad cloudless spaces between
cells. Burleyson and Yuter (2015b), however, demon-
strated that mesoscale stratocumulus cloud fraction has
little sensitivity to drizzle at lag times of 1-3 h. Whether
drizzle is a cause of this breakup or a symptom of other
processes acting to break up the clouds is an ongoing
puzzle, currently limited by precipitation data avail-
ability and a lack of sensitivity to light rain over the re-
mote oceans. While the CloudSat precipitation products
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provide the best available estimates of precipitation
frequency and intensity in shallow marine clouds, the
nadir-only sampling of CloudSat is insufficient for work
attempting to disentangle cause and effect in drizzle and
cloud processes. Recently, new satellite data products
utilizing passive microwave observations of bright-
ness temperature T, (Miller and Yuter 2013, hereafter
MY 13; Duncan et al. 2018) have shown the potential for
vastly improved remote sensing of drizzle in shallow
marine boundary layer clouds.

The use of high-frequency passive microwave Ty, has
shown significant potential for estimating liquid water
path (LWP), particularly around 90 GHz, where the T}
response to LWP is 6 times greater than at 30 GHz.
(Crewel and Lohnert 2003; Bobak and Ruf 2000; Petty
1994). This makes the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E; Wentz and Meissner
2004) passive microwave 89-GHz brightness tempera-
tures (Ashcroft and Wentz 2006) well suited to de-
tecting LWP in warm boundary layer clouds. Higher
LWP in these low clouds is shown to be associated with
more observed precipitation (Comstock et al. 2004;
Geoffroy et al. 2008; Abel et al. 2010; Lebsock et al.
2008), allowing precipitation occurrence to be inferred
from 89-GHz brightness temperature.

As described in Petty (1994) and MY13, Ty, observed
by a satellite sensor for a certain frequency and wave-
length is the sum of upward emissions from hydrome-
teors, the ocean surface, and humidity throughout the
column minus any absorption by gases and scattering
by ice particles. View angle may also affect observed Ty,
since photons viewed at wider angles have a longer
pathlength to the sensor, and because emission of mi-
crowaves can be anisotropic. Therefore, a Ty, retrieval
provides an inaccurate measure of rain rate without
information about surface emissivity, controlled by both
temperature and roughness due to wind waves, and the
abundance of water vapor and ice in the column. Cur-
rently available datasets using other microwave and in-
frared channels as well as reanalyses are now capable
of quantifying confounding variables such as sea sur-
face temperature, wind speed, column water vapor, and
cloud-top temperature. Controlling for these variables
allows for much more accurate quantifications of pre-
cipitation occurrence and intensity derived from Ty,

Based on limited ship-based radar observations in the
southeast Pacific, MY13 have built a binary precipitation
product that detects the presence of heavier drizzle in
marine Sc. They posit that the largest variance in LWP will
be seen on spatial scales equivalent to the sizes of indi-
vidual drizzle cells. Their routine estimates liquid water
path using the AMSR-E T, at 89 GHz while also ac-
counting for the varying background T, caused by varying
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column-integrated water vapor. If the retrieved T, within a
4km 3 6km pixel exceeds a Ty, threshold equivalent to a
LWP of 200gm?22, then heavy drizzle is reported. This
binary product marks an improvement in sensitivity and
resolution over existing passive-microwave-derived pre-
cipitation products.

Comparisons between collocated AMSR-E 89-GHz T,
and C-band radar retrievals from the VAMOS Ocean—
Cloud-Atmosphere-Land Study Regional Experiment
(VOCALS-REXx) campaign (Wood et al. 2011b) in MY 13
(their Fig. 1) show that the spatial patterns in Ty-derived
precipitation coincide very well with the patterns of
precipitation shown by the radar. The spaceborne radar
carried aboard CloudSat creates a powerful opportu-
nity to expand on this approach to a much larger
dataset spanning diverse geography and meteorology.
Because CloudSat and the Aqua satellite carrying the
AMSR-E instrument are orbiting only one minute
apart in formation, millions of CloudSat rain-rate re-
trievals (Lebsock and L’Ecuyer 2011) and AMSR-E
89-GHz Ty, retrievals are collocated in both space and
time. This overlap of retrievals allows for a direct com-
parison of radar-retrieved rain rates and 89-GHz T,,.
The collocated observations can then be used to create a
robust analysis comparing rain rate to T, for a variety of
atmospheric conditions.

Here we will expand on the work done by MY13 by
using the collocated CloudSat and AMSR-E retrievals to
establish mean relationships between T, and rain rate
in subtropical Sc and trade cumulus (Cu) clouds. To
this end we will use CloudSat as a training dataset while
controlling for a number of confounding factors, such
as column-integrated water vapor, surface wind speed, sea
surface temperature, and overlying ice clouds, detected by
the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard Aqua. Using the mean relationships
between T, and rain rate we will present a routine that
estimates for each T, value: the probability that pre-
cipitation is occurring, the mean rain rate associated with
that T, the mean rain rate when raining, and the maximum
likely rain rate. Using this routine, we develop a climatol-
ogy of Ty-derived light rain rates that are comparable to
existing CloudSat-derived climatologies in the subtropics
developed by Leon et al. (2008) and Rapp et al. (2013).
Eventually, a twice-daily, swath-level rain-rate product will
be produced for light rain rates in the subtropics.

2. Data
a. Stratocumulus and trade cumulus study regions

Data for this work are currently restricted to the year
2007 and are sampled only within the four subtropical
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FiG. 1. Individual, coinciding CloudSat soundings and AMSR-E T, pixels during a de-
scending node in the southeast Pacific. Observations connected by a blue line are assumed to be
spatially and temporally (within 1 min) collocated. Ellipses represent the estimated size and
shape of each instruments field of view. (CloudSat, black: 1.4 km across track, 1.7 km along
track; AMSR-E, red: 4 km across track, 6 km along track).

stratocumulus regions used in Eastman and Wood
(2016): The northeast Pacific (158—-308N, 1558—-1158W),
southeast Pacific (308-58S, 1058—708W), southeast Atlantic
(308-58S, 158W-158E), and eastern Indian (308-208S,
608—-1108E) Oceans. These regions were chosen in order
to study the geographic maxima in Sc amount as well as
the regions farther offshore where Sc transitions to trade
Cu clouds. They contain few overlying ice clouds and are
often free of organized synoptic-scale weather systems
that may cause multilayered clouds or heavy, mixed-
phase precipitation.

b. 89-GHz AMSR-E microwave brightness
temperatures

Microwave brightness temperatures are measured by
the AMSR-E (Wentz and Meissner 2004; Ashcroft and

Wentz 2006) sensor for the year 2007. The AMSR-E
sensor operated aboard the Aqua satellite as part of the
A-Train satellite constellation. The A-Train crosses the
equator at 0130 and 1330 local times, making those
the approximate sample times in the subtropics. The
AMSR-E has a swath width of 1445 km, and the 89-GHz
Ty, is sampled in an arcing pattern with pixel sizes of
approximately 4km 3 6 km. Although pixel resolution is
4 km3 6km, pixel centers are separated by 10km in the
along-track direction, leaving a ; 4-km gap between pixels.

The 89-GHz T, measures both horizontal and vertical
polarization. As established in MY 13, we use the hori-
zontal polarization in the statistical algorithm because
it has a larger dynamic range and is slightly less noisy
than the vertical polarization (MY13; Jones and VVonder
Haar 1997).
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FIG. 2. CloudSat surface rain rates from the rain-profile product as a function of the collo-
cated 89-GHz Ty, Individual coinciding observations are shown as blue dots (1 in 20 are shown).
The 5-K bin means are shown as red dots; 2s standard error bounds for each 5-K bin mean are
shown by the black vertical bars. Gray lines are a scatter density plot of all individual collocated
observations, using a grid spacing of 2.5 K along x and 0.2 mm hZ* along y. Standard deviations
for each bin mean rain rate are shown as the blue error bars.

¢. Rain rate from CloudSat rain profile

Rain-rate retrievals come from the 94-GHz nadir-
looking, cloud-profiling radar aboard CloudSat (Stephens
et al. 2002), which was a part of the A-Train satellite
constellation for the time period studied here. CloudSat
continuously samples a “curtain” within the swath of
AMSR-E, allowing for radar observations to be concur-
rent in space and time with the 89-GHz T, retrievals.
The CloudSat along-track interval per radar burst is
around 1.7 km with a swath width of 1.4km. The foot-
print of a CloudSat precipitation sample is much smaller
compared to the AMSR-E Ty grid, which allows for
several CloudSat observations to coincide with a single
Ty, pixel. We address this further below in section 3.

To measure rainfall, we use the CloudSat 2-C rain-
profile R04 product. This product provides an estimate
of warm rainfall rate at the surface and is stated to be
sensitive to rain rates as low as 0.001 mmh=* (L’Ecuyer
and Stephens 2002; Lebsock and L’Ecuyer 2011).
Complete attenuation of the radar beam is rare in the
subtropics, which is why we initially constrain our proj-
ect to just the subtropical Sc regions. In the rare event
of complete attenuation before sensing the surface, rain

rates are flagged with a minus sign, then assigned the
largest measured rate before full attenuation. These
measurements are included in this analysis (by using the
absolute value of all CloudSat rain rates) since there was
no detectable sensitivity to their inclusion or exclusion.

d. Water vapor, sea surface temperature, 10-m wind
speed, rain rate, and ice clouds

To better constrain the relationship between rain rate
and Ty, we use several meteorological variables that are
known to affect the observed Ty: column-integrated
water vapor (CWV), sea surface temperature (SST), 10-m
wind speed (WSP), and ice clouds. Column-integrated
water vapor is sourced from the AMSR-E Aqua environ-
mental suite of L3 data (version 7; Wentz et al. 2014) on a
regular 0.258 3 0.258 latitude—longitude grid. Sea surface
temperature is taken from the surface skin temperature
contained in the ERA-Interim reanalysis on a 18 3 18
latitude—longitude grid (Dee et al. 2011). Wind speed is
sourced from the ERA-Interim 10-m wind speed. Ice
clouds are detected by MODIS L2 collection 6 cloud-
top temperatures resampled on a 5km 3 5km grid
(MYDATMLZ2; Platnick et al. 2017a,b; available online at
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FI1G. 3. Mean CloudSat rain-profile rain rates as a function of Ty, for bins of (a) CWV, (b) SST,
and (c) WSP. Standard error bounds (2s) are shown as shaded regions to highlight that these
subsets of matched points are distinct from one another, and their differences must be

accounted for.

https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/I2-joint-atmosphere/MY DATML2/).
If an AMSR-E T, pixel falls within a MODIS L2 pixel
containing a cloud top cooler than 263K (10K below freez-
ing), then that AMSR-E pixel is likely to contain ice along
with supercooled water and is excluded from our analysis.

e. Comparison with existing swath-level rain-rate data

To compare the rain-rate estimates created here with
an existing satellite-based, passive microwave product,
we use the instantaneous surface rain rates and proba-
bilities of precipitation provided in the AMSR-E Aqua
level-2B precipitation product (AE_Rain; Kummerow
et al. 2015). The AE_Rain product is available at the

swath level for pixel sizes roughly 5 km across track and
10 km along track. Though AE_rain has a similar spatial
resolution compared the 89-GHz Ty, it is slightly coarser
and spatially resampled, so pixels are not perfectly geo-
graphically collocated with the 89-GHz Ty, pixels. Rain rates
contained in AE_rain are derived from brightness temper-
atures from lower-frequency channels, not just 89 GHz,
so AE_rain rates tend to be less sensitive to drizzle, but
more suitable for measuring convective precipitation.

3. Methods

As mentioned above, multiple CloudSat observations
tend to coincide with a single AMSR-E pixel. This is
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F1G. 4. Two-dimensional projections of a three-dimensional plot of environmental variables
known to effect Ty, for each T, observation in our study; 1s bin boundaries are shown by the
axis labels and grid lines. (a) Column water vapor plotted against sea surface temperature,
(b) column water vapor plotted against 10-m wind speed, and (c) 10-m wind speed plotted

against sea surface temperature.

shown more clearly in Fig. 1 where individual CloudSat
soundings are plotted on a map along with AMSR-E
pixels. Collocated observations in Fig. 1 are connected
by lines. For each AMSR-E pixel there are ;5-6 co-
inciding CloudSat observations within the pixel.

An initial relationship between collocated 89-GHz
T, and CloudSat rain rate is seen in Fig. 2 where each
CloudSat AMSR-E collocated observation is treated
independently, meaning T, pixels are shown multiple
times, so that all CloudSat observations are shown in-
dividually. Figure 2 shows the relationship between
Cloudsat rain rate and Ty, for all subtropical observations
during 2007. Every twentieth collocated observation

is plotted as a blue dot and 5-K bin mean rain rates are
shown by red dots with 2s standard error bounds
(meaning twice as wide as the standard error bounds
as calculated with one standard deviation) shown as
the vertical black bars. A scatter density plot showing
the number of collocated observations per unit area
on the figure is also shown as the gray contour. Standard
deviation is shown as a blue error bar. On average, rain
rates are higher when Ty, is higher. This is due to the
increase in the number of hydrometeors emitting mi-
crowaves in the 89-GHz band. There is significant scat-
ter in the data, however. Some of this spread is caused
by the nonunique mapping of precipitation rate into Ty,

020z Jequisidag 60 UO Jasn saueliqi] uolbulysepn Jo Ausieaun Aq jpd-L681.0-8L-P-Udsliv L€ 287/SE0 L/9/9€/pd-alonie/yosyl/Bio oosiewe sjeuinolj/:dny woy papeojumoq



JUNE 2019

EASTMAN ET AL.

1039

FI1G. 5. Rain rates from CloudSat rain profile within a single 4 km 3 6 km AMSR-E T, pixel.
The mean rain rate is the mean of all CloudSat rain rates including rate 5 0, the mean rate when
raining is the mean of only those CloudSat rates detecting precipitation, and the maximum rain
rate is the greatest CloudSat rain rate observed within the AMSR-E pixel. Collocated values
discussed hereafter refer to these three quantities within each AMSR-E pixel.

pixels, since CloudSat footprints fail to sample the entire
Ty, pixel, but other significant sources of noise are the
confounding variables that are addressed below.

One considerable source of noise in Fig. 2 comes from
the differences in background T, seen by AMSR-E due
to environmental differences. The SST, CWV, and wind
speed are all varying in Fig. 2 and differences in those
variables drive differences in T, observed by AMSR-E
independent of precipitation. To highlight this, in Fig. 3
we have separated our collocated observations into bins
based on CWV, SST, and wind speed and fit curves to
the mean relationships seen between rain rate and T, for
each bin. Standard error (2s) bounds are shown by the
shaded regions for each bin. Bin bounds used to group
our confounding variables are 2s standard deviations
added or subtracted from the mean value of each vari-
able. Figure 3a shows that the Ty/rain-rate relationship is
significantly modified by the column water vapor. When
CWV is high, precipitation coincides with considerably
warmer T, compared to when CWYV is low. A similar
relationship is seen in Fig. 3b where an equivalent rain
rate coincides with warmer T, when SST is high com-
pared to low. Finally, Fig. 3c shows that wind speed has
a less powerful, but still noticeable, effect on the T,/
rain-rate relationship. An equivalent measure of rain

rate coincides with a lower T, when faster wind speeds
are estimated by the ERA-Interim.

Figure 3 demonstrates that when quantifying rain rate
as a function of Ty, the background CWV, SST, and
wind speed need to be accounted for. In this analysis we
do this by calculating the mean relationship between
rain rate and T}, within bins of each confounding vari-
able. Bins are determined by a three-dimensional plot of
collocated CloudSat and Ty, observations with the x, vy,
and z axes representing the CWV, SST, and wind speed
of each observation. A three-dimensional grid of bin
boundaries is then established based on 1s standard
deviation bins of each variable. For each variable along
each axis there are six bins: x - 3s,3s - x - 2s,2s .
X - 1s,1s . x - 0s, 21s , x , Os, 22s ,
X , 21s,23s , x , 22s, X , 23s. Two-dimensional
projections of this plot are shown in Fig. 4 with grid lines
indicating bin boundaries. This scheme allows for 6° or
216 total bins; however, the majority of the bins are not
well populated with observations, with only 77 con-
taining enough observations to derive meaningful T/
rain-rate relationships, this is explained in further detail
below. Bins with too few observations are assigned a
missing value, though they may be populated when ap-
plying this routine to a larger area for a longer time.
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F1G. 6. (a)-(d) Fits to collocated CloudSat rain-profile rain-rate statistics and AMSR-E Ty, for a
single CWV/SST/WSP bin. Blue dots represent collocated observations (1 in 20 shown). Red
crosses represent bin means (along x, in Ty, space) of 9 collocated observations, which are used for
curve fitting. The black line in (a) represents a linear fit to the T, 5 logit(p) relationship. The black
linesin (b), (c), and (d) represent power-law fits. The R? value indicates the percentage of variance
explained by the fit, and Sig (significance) indicates the significance level of the variance explained
by the fit. Bins are only included in this work if the significance level exceeds the 95% threshold.

As mentioned above, there are several CloudSat ob-
servations within each AMSR-E Ty, pixel. This is likely
another source of noise seen in Fig. 2 since the multiple
CloudSat observations within each Ty, pixel will not all
be identical. Figure 5 shows an example of an AMSR-E
pixel that is observed to be raining by CloudSat.
Within the pixel there are five CloudSat samples, with
four seeing rain. Using these five observations we can
determine four statistics for the pixel describing the

character of the rainfall: 1) the probability that the
pixel contains rainfall, which is a binary result for each
pixel: if any CloudSat observation within the pixel ob-
serves rain, the probability is set to 1, otherwise O;
2) the mean rain rate, which is the mean of all pre-
cipitating and nonprecipitating CloudSat rain rates
within the pixel; 3) the mean rate when raining, which is
the mean rain rate for only the raining observations
(this is also known as a conditional rain rate); 4) the
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FiG. 7. Logit(p) plotted as a function of Ty, from Fig. 6a; p is the fraction of collocated
CloudSat observations that detect any precipitation within an AMSR-E pixel. Blue dots rep-
resent red crosses from Fig. 6a. Here, red crosses represent 5-K bin mean logit(p) values. The
red line is the linear fit to the red crosses. Uniform binning across the x axis is vital because of
the uneven distribution of points along x, which causes the linear fit to favor the cluster of points

at low Ty, values, flattening the fit.

maximum rain rate observed by CloudSat. The latter
three of these values are shown in Fig. 5, with the black
line indicating the mean rain rate, the blue line in-
dicating the mean rate when raining, and the red line
showing the maximum rate.

The relationship between T, and precipitation is seen
for a year of data within one CWV/SST/wind speed bin in
Fig. 6. Individual collocated observations are shown as
blue dots in Figs. 6b—d. Red crosses are the mean of nine
consecutive (in Ty, space, along the x axis of the plot,
explanation below) individual, collocated observations.
Curves are fit to these red crosses (detailed below) and
represent the mean relationship between T, and rain
rate within this box. The red crosses are used for curve
fitting because they are much less noisy, so allow for
more efficient and stable fitting routines.

A brief experiment was run to determine the optimum
number of observations to be binned into the red crosses
in Fig. 6. If too few observations are combined, then the
plots are too noisy for fitting, but if too many observa-
tions are combined, then the plots have too few points
to allow for reliable curve fitting. To optimize this, the
number of individual observations averaged into bins

(represented by crosses) was varied between 1 and 30,
then curves were fit to the crosses in each CWV/SST/wind
speed bin. Coefficients defining the curves (described
below) were only returned if the variance in rain rate
explained by the fit (where rain rate is a function of T)
was significant at or above the 95% level (meaning the
correlation between rain rate predicted by the fit and
the measured rain rate was significant at the 95% level).
The greatest number of CWV/SST/wind speed bins with
statistically significant fits was achieved when nine indi-
vidual, collocated T, and rain-rate observations were
combined, allowing for good fits in 77 CWV/SST/wind
speed bins.

Figure 6a shows only red crosses and omits the in-
dividual, binary probability points. The figure shows
greater probability of rain with increased T,. The curve
shown in black is calculated by fitting a straight line to
the relationship Ty, 5 logit(p), where p is the probability
of rain. The linear fit to the logit function is shown in
Fig. 7. We chose the linear fit to the logit function for its
superior behavior at the lower and upper Ty, limits where
it asymptotes to p 5 0 and p 5 1, respectively. To im-
prove the representativeness of the fit Ty, values are
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FI1G. 8. Spaghetti plots showing all fits to (a) precipitation probability as a function of Ty, and
(b) mean rain rate, (c) rain rate when raining, and (d) maximum rain rate as a function of T, for
all 77 available bins. Line colors represent the CWV, SST, and WSP of each bin as shown by the

color key in (d).

excluded at temperatures below the coolest drizzling
temperature. This eliminates nonlinear behavior in the
scatterplot where T}, continues to decline, but drizzle is
not present. The linear fit does not perfectly characterize
the behavior of the data, but provides a simple fit that is
reliably well behaved at high and low T, values. The
logit function is defined below:

logit(p) 5 log Epp . o)

Figure 6b shows mean rain rate plotted as a func-
tion of Ty,. In Fig. 6b as well as Figs. 6¢ and 6d, the
black curve represents a power-law fit to the data of
the type

rate5A3TE1C, &)

where the coefficients A, B, and C are determined
using a robust power-law regression after scaling Ty,
between 0 and 1 for Ty, range 220K - T, - 290K.
Figures 6¢c and 6d use the same technique to fit the mean
rate when raining and maximum rate when raining, re-
spectively, as a function of T,. Curves are fit to the red
crosses (9-point mean value along x) not the individual
observation points.

The routine outlined above is applied to all 77 CWV/
SST/wind speed bins that contain enough data to cal-
culate these fits and show a 95% significance or above.
Coefficients for each curve are calculated only for the
range of Ty, values seen in our year of collocated data, so
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F1G. 9. A MODIS visible satellite image from 23 Jan 2007 in the northeast Pacific with estimated rain rates
overlaid. Colored dots represent estimated average rain rates derived from 89-GHz Ty, for all probabilities of
rainfall. The black rectangle shows the region plotted in Fig. 10. The difference in swath width between the AMSR-
E sensor and MODIS is apparent on the eastern edge of the figure, where MODIS cloud observations continue

outside the observable domain of AMSR-E.

no extrapolation takes place. Each individual curve and
its T, range is shown in the spaghetti plots in Fig. 8. To
estimate rainfall statistics as a function of all T}, within
our subtropical study regions, we then apply the co-
efficients derived from the fits to the T\, data across the
entire AMSR-E swath for each CWV/SST/wind speed
bin. Brightness temperatures that fall outside the range
for each bin illustrated in Fig. 8 are flagged and assigned
to the maximum or minimum Ty, at whichever end of the
range was exceeded. Bin boundaries, linear fit coeffi-
cients, and power-law fit coefficients for mean rain rate,
rate when raining, and maximum rain-rate estimates are
available in the online supplemental material in sup-
plemental Tables 1-5, respectively. Tables also show
the significance level of each fit and the number of in-
dividual CloudSat observations contributing to each fit is
listed in supplemental Tables 3-5.

It is possible for the curve-fitting routines described
above to estimate higher mean rates than mean rates
when raining, and higher mean rates when raining than

maximum rates. This is avoided by establishing mini-
mum bounds on the fitting routine, so that the curve fit to
rate when raining data cannot be lower (in y) than the
mean rate and the curve fit to the maximum rate cannot
be lower than the curve for the rate when raining.
Brightness temperature observations may be affected
by the presence of ice clouds. To ensure that our pre-
cipitation estimates are not biased by this we filter for
scenes where ice clouds are detected by MODIS. If the
MODIS L2 cloud-top temperature observation nearest
any Ty pixel has a temperature below 263K, it may
contain ice, so the Ty, pixel is excluded from the analysis.

4. Results

Figure 9 shows an example of AMSR-E 89-GHz rain-
rate estimates plotted along with the corresponding
MODIS visible imagery in the northeast Pacific region.
Mean rain rates are shown as orange and purple dots,
with the color scale shown at the bottom of the figure.
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FI1G. 10. A closer look at several open cells embedded in closed cells from the rectangle shown in Fig. 9. The same plotting conventions
apply. The green line shows the track of CloudSat. Colored squares represent the CloudSat rain rates using the same color scheme as the

Ty-derived values.

Rain rates estimated from AMSR-E T, correspond
spatially very well with variations in cloud cover. Gen-
erally, rain is observed in the cores of both open and
closed Sc cells. In this scene, open or more broken Sc
cells tend to show smaller clusters of precipitation with
higher rain rates than closed Sc cells, agreeing with the
conclusions of Comstock et al. (2007).

In Fig. 10, a small portion of Fig. 9 (illustrated by the
black box in Fig. 9) is shown in greater detail. The
CloudSat curtain is shown as a green line and CloudSat
precipitation observations are shown as squares, with a
color scale matching the AMSR-E scale shown below
the map. Here we show the precipitation pattern for
open cells embedded within a region of closed cells.
Spatial correspondence is again seen not only with the
MODIS cloud-cover imagery, but with the collocated
CloudSat retrievals. The heaviest rain rates are seen
near the edges of the field of open cells, where closed
cells may be transitioning to open. Agreement with
CloudsSat retrievals is seen in a lightly drizzling closed
cell near the top of the figure and in two heavier drizzling
open cells below.

Climatologies of our four precipitation products
have been made by averaging rain rate and probability
estimates from all available days in 2007 on a regular
latitude—longitude grid for day and night separately.

Two are shown here. Figure 11 shows the mean prob-
ability of rainfall at night for our four study regions on a
2.58 3 2.58 grid. We choose this relatively coarse grid
to minimize noise and highlight large-scale features
within the four regions. Drizzle is more frequent off-
shore where the planetary boundary layer tends to be
deeper and Sc begins its transition to trade Cu. Driz-
zle is least frequent near the continents where coastal
clear areas or very shallow Sc decks are more common.
Probabilities of drizzle are lower farther west in the
downwind portions of our study regions where the
boundary layer tends to be deep, but cloud cover is less
expansive.

Maps of probabilities of night time drizzle in Fig. 11
compare well with the maps of drizzle frequency in Leon
et al. (2008, their Fig. 4), Milmenstadt et al. (2015, their
Fig. 3b), and Rapp et al. (2013, their Fig. 3a), though just
in the southeast Pacific. All of these works show pre-
cipitation frequency/probability maxima offshore and
downwind in the Sc regions, and both our Fig. 11 and
Leon et al. (2008, their Fig. 4) show that the southeast
Pacific has the most frequent drizzle, while drizzle fre-
quency is lower in the northeast Pacific, lower yet in the
southeast Atlantic, and lowest in the eastern Indian
Ocean. In comparing those works, the values for drizzle
frequencies differ because of different thresholds and

020z Jequisidag 60 UO Jasn saueliqi] uolbulysepn Jo Ausieaun Aq jpd-L681.0-8L-P-Udsliv L€ 287/SE0 L/9/9€/pd-alonie/yosyl/Bio oosiewe sjeuinolj/:dny woy papeojumoq



JUNE 2019

EASTMAN ET AL.

1045

FiG. 11. Nighttime mean probabilities of rainfall averaged on a 2.58 3 2.58 latitude-longitude
grid for all of 2007. Blue colors indicate greater rainfall likelihoods.

metrics used, but the geographic distribution of drizzle
features compare well.

In Fig. 12, we show the nighttime mean rain rates
ona?2.58 3 2.58grid, again to show large-scale features
and minimize noise. The spatial patterns of these rain
rates do not directly correspond to the probabilities
seen in the prior figure. Instead, rain rates are stron-
gest farther offshore, where the sea surface is warmer
and the boundary layer is deeper, suggesting that rain
rates are influenced by sea surface temperature and
boundary layer depth. The lowest rain rates occur
nearer the coasts in regions where shallow boundary
layers are common. A comparison of Fig. 12b with
Rapp et al. (2013, their Fig. 5b) shows a similar loca-
tion for the maximum mean rain rate in the southeast
Pacific, at around 188S, 1008W, as well as a similar
tendency toward lower rates near the South American
continent.

As a check on rain estimates derived from the AMSR-
E 89-GHz Ty, retrievals, rates are compared back against
the CloudSat Rain Profile retrievals used to drive the Ty,
regression. In Fig. 13, AMSR-E 89-GHz mean rain-rate
estimates are compared to collocated corresponding
CloudSat observations within each pixel for January
2007. Mean CloudSat rain rate, variance, and the number

of individual CloudSat observations are plotted for bins
of 89-GHz rain rate in Figs. 13a—c. Figure 13a shows the
mean plus standard error bounds of collocated CloudSat
rain rate as a function of AMSR-E rain-rate esti-
mates. The relationship is very strong for rates less than
2mmh?!, often falling exactly on the 1:1 line shown in
blue. Variance increases with rain rate until around
2.5mm hZ! when variance levels off with increasing rain
rate. The initial increase in variance with rain rate is
likely due to the spotty, irregular nature of heavier
drizzle cells as seen in Figs. 9 and 10. In these heavier
cells, small convective cores are typically surrounded by
regions of light rain, allowing for the higher-resolution
CloudSat to sample a wider range of rain rates within a
single AMSR-E pixel. Standard error bounds increase
with rain rate, likely because of declining sample sizes,
shown on the logarithmic plot in Fig. 13c.

An additional comparison is made between our
CloudSat-tuned AMSR-E 89-GHz product and the
currently available AE_Rain rain rates (Kummerow
etal. 2015). Because the pixels are not matched in space,
rain rates from both datasets were first averaged on a
0.28 3 0.28 latitude-longitude grid for each day and night
for all days in January of 2007. The resulting plot shows
the mean AE_Rain rain rate as a function of the
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FI1G. 12. Nighttime mean rain rates averaged on a 2.58 3 2.58 latitude—longitude grid for all of
2007. Blue colors indicate heavier rainfall rates.

spatially and temporally collocated 89-GHz Ty, rain-rate
estimates for all rain probabilities. Mean AE_Rain rain
rates are shown as red dots with standard error bounds
shown as thick, black lines. The slope of the x-y plot
in Fig. 14 is less steep than the 1:1 line. This means that
the 89-GHz estimates are sensing precipitation more
frequently, or sensing greater rain rates compared to
AE_Rain, thus indicating a greater sensitivity to light
rain for the 89-GHz product.

Conclusions drawn from Fig. 14 are supported by the
maps shown in Fig. 15, where the spatial patterns of
mean rain rates from both products are compared for
one instance. Rates are compared for three thresholds of
minimum precipitation probability: 10%, 25%, and 50%
(e.g., a2 10% threshold includes only pixels with a greater
than 10% probability of rain). The scene shown in
Fig. 15 is for the same day and region as shown in Fig. 9,
but with the northern boundary expanded to 308N in
order to sample a portion of a more organized synoptic-
scale disturbance, and the eastern boundary con-
tracted to 1308W. Rain rates from both products are
shown as colored dots using the same color scale as
Figs. 9 and 10. The comparison shows that the AE_Rain
product tends to overreport rain occurrence at low
probabilities (Fig. 15d), so much so that nonzero rain

rates are returned for most of the cloudy pixels seen
in Fig. 9. As the threshold for minimum precipitation
probability increases, the spatial distribution of AE_Rain
rates begins to loosely match the distribution of rain rates
shown by the 89-GHz T, product, but AE_Rain shows
little variation in rate compared to the 89-GHz product,
with the AE_Rain rates uniformly low. In the upper left, a
larger region of precipitation associated with a frontal
boundary is well-sampled by both products for all three
thresholds. These results show that the 89-GHz product
presented here offers improved sensitivity to light rain
compared to the currently available AE_Rain product.

5. Discussion

This AMSR-E 89-GHz precipitation product provides
an improvement in drizzle detection compared with
existing products, with a greater sensitivity to light rain
compared to the currently available AE_Rain passive mi-
crowave product. The 89-GHz Ty, rain-rate estimates also
offer wider spatial sampling compared to CloudSat,
though the Ty, product is lacking the vertical resolution
and fine along-track resolution offered by CloudSat.
Equally as important, the new product provides a
unique, large-scale view of the spatial organization of
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FI1G. 13. CloudSat rain profile (a) mean rain rates, (b) variance of rain rate, and (c) number of
collocated CloudSat observations as a function of AMSR-E 89-GHz Ty-derived rain rates for

rain-rate bin widths of 0.1 mm h3?

January 2007.

drizzle within shallow marine clouds that has heretofore
been elusive.

In Kalmus and Lebsock (2017), CloudSat rain-profile
R04 was shown to be biased in warm rain environments
because of inadequacies in the evaporation-sedimentation
model used to estimate surface rain rates. This bias pro-
duced an overestimation of rain rates. An improved rain-
profile dataset (R05) will soon be released, which compares
more favorably with other collocated radar observations.
When the RO5 update is released, we will update these
rain-rate estimates using the improved CloudSat R05
training data. Additionally, the coarse-binning routine
currently employed by this routine may be refined in order
to reduce discontinuities associated with bin boundaries.

. A 1:1 line is shown as a green line in (a). Data are for

This style of algorithm could be applied to retrievals
from other microwave sensors aboard satellites or
aircraft using other radar observations to tune T,
observations using recomputed regressions, allowing
for better rain detection over remote oceanic regions
not observed by any radars. Any future applications
would rely on other methods for screening for ice
clouds and would require accommodating different
sensor geometries. The limited geographic extent
currently offered by these estimates is a significant
drawback; however, expansion into the rest of the
subtropics and convection-free regions of the tropics
is planned. Ultimately, this algorithm could be used to
evaluate precipitation datasets such as the Integrated
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F1G. 14. Bin mean AE_Rain rain rates as a function of collocated CloudSat 1 AMSR-E 89-GHz
Ty, rain rates with 2s standard error bounds shown as vertical bars. Mean rates are calculated for
both products on a 0.28 3 0.28 latitude—longitude grid, twice daily for all four Sc regions on all days of
January 2007. A diagonal, black 1:1 line is shown. A scatter density plot is shown as the gray contour,
indicating how many observations are matched per 0.1 mm h®* box. Data are for January 2007.

Multisatellite Retrievals for GPM (IMERG) dataset
(Huffman et al. 2018), or the optimal estimation pre-
cipitation retrieval method used in Duncan et al.
(2018). Finally, the warm rain rates calculated here
could be used to aid in tuning new neural network—
based algorithms (Sano et al. 2018)

This new rainfall product will have several imme-
diate applications. Rain rates associated with strato-
cumulus cellular structures and differing boundary
layer depths can be compared in greater numbers.
Precipitation processes during Lagrangian transitions
in cloud cover can be assessed throughout the process.
Additionally, climatologies for drizzle can be pro-
duced in greater temporal and spatial detail be-
cause of the widened spatial sampling compared with
CloudSat. Applying this routine to T, observed by
other orbiting microwave sensors could allow for even
greater spatial and temporal coverage. Finally, this
product can be used to further study complicated
and difficult to observe precipitation—-aerosol-cloud
interactions.

6. Conclusions

We present an algorithm that estimates warm rain
rates using 89-GHz microwave brightness temperatures
from the AMSR-E sensor on the Aqua satellite. The

analysis is currently limited to four subtropical ocean
basins. To produce estimates, first it is necessary to hold
sea surface temperature, column water vapor, and wind
speed constant in bins. This binning controls for the ef-
fects that those variables have on the relationship be-
tween Ty, and rain rate. Pixels that may contain ice
clouds are removed. After controlling for these vari-
ables that modify the Ty/rain-rate relationship, curves
are fit to plots of CloudSat rain rate as a function of T.
The coefficients that define these curves allow for esti-
mates of precipitation statistics from Ty,

Each 4km 3 6 km T}, pixel sampled by both AMSR-E
and CloudSat usually contains 5 or 6 CloudSat rain-rate
estimates. This allows for the calculation of several
statistics within a pixel: the probability that rain is ob-
served, the mean rain rate, the rate when raining, and
the maximum rain rate. This algorithm produces these
four estimates for each Ty, retrieval on an irregular
4km 3 10 km grid currently for the year 2007. Although
pixel sizes are 4km 3 6km, the actual grid spacing
is 4km 3 10km owing to gaps between pixels in the
along-track direction.

Precipitation estimates using the AMSR-E 89-GHz T,
are compared with MODIS visible imagery, CloudSat,
and the AMSR-E AE_Rain rainfall product using
lower-frequency microwave channels. Comparisons
show that 89-GHz precipitation estimates match well
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F1G. 15. Mean surface rain rates derived from (a)—(c) 89-GHz AMSR-E T, and CloudSat compared to rates from (d)-(f) AE_Rain
for 23 Jan in the northeast Pacific, observing the same scene as Fig. 9, but with an expanded northern boundary around 1330 LT 23 Jan
2007. Rain rates are plotted for three minimum precipitation probability thresholds: (left) 10%, (center) 25%, and (right) 50%. Colors
correspond to rain rates as shown in the legend along the base of the plot, with reds and purples indicating heavier drizzle.

with MODIS imagery, so that precipitation is ob-
served in cores of open and closed cell stratocumulus.
A comparison back against CloudSat rain rates shows
excellent agreement at rain rates below 1 mm h=* where
comparison data are plentiful. Above that threshold,
variances and errors tend to increase because of small
size and spotty geographic distribution of heavy drizzle
cells and limited sample sizes. A further comparison is
made with the AE_Rain product, where the 89-GHz
product shows improved sensitivity to light rain. Mean
climatologies of precipitation statistics appear reason-
able, with maxima in precipitation probability near the
Sc—Cu transition regions and the strongest rain rates
offshore and equatorward within our study regions, lo-
cated where the SST is warmest and the boundary layer
is deepest.

This product can be used to improve the study of
several open questions in cloud and climate science re-
quiring subdaily temporal resolution and wide geo-
graphic data availability. Climatologies of precipitation
can be produced on a finer scale both temporally and
spatially. Using this algorithm, the expansion of this
product is anticipated in warm cloud regimes in order to
make precipitation estimates available for all years with
AMSR-E T}, observations.
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