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ABSTRACT

ALagrangian technique is developed to sample satellite data to quantify and understand factors controlling

temporal changes in low-cloud properties (cloud cover, areal-mean liquid water path, and droplet concen-

tration). Over 62 000 low-cloud scenes over the eastern subtropical/tropical oceans are sampled using the

A-Train satellites. Horizontal wind fields at 925 hPa from the ERA-Interim are used to compute 24-h, two-

dimensional, forward, boundary layer trajectories with trajectory locations starting on the CloudSat/

CALIPSO track. Cloud properties from MODIS and AMSR-E are sampled at the trajectory start and end

points, allowing for direct measurement of the temporal cloud evolution. The importance of various controls

(here, boundary layer depth, lower-tropospheric stability, and precipitation) on cloud evolution is evaluated by

comparing cloud evolution for different initial values of these controls. Viewing angle biases are removed and

cloud anomalies (diurnal and seasonal cycles removed) are used throughout to quantify cloud evolution relative

to the climatological-mean evolution. Cloud property anomalies show temporal changes similar to those ex-

pected for a stochastic red noise process, with linear relationships between initial anomalies and their mean 24-h

changes. This creates a potential bias when comparing the evolutions of sets of trajectories with different initial

anomalies; three methods are introduced and evaluated to account for this. Results provide statistically robust

observational support for theoretical/modeling studies by showing that low clouds in deep boundary layers and

under weak inversions are prone to break up. Precipitation shows a more complex and less statistically sig-

nificant relationshipwith cloud breakup.Cloud cover in shallow precipitating boundary layers ismore persistent

than in deep precipitating boundary layers. Liquid water path and cloud droplet concentration decrease more

rapidly for precipitating clouds and in deep boundary layers.

1. Introduction

Subtropical marine stratocumulus (Sc) clouds cool

Earth’s climate significantly. Stratocumulus clouds ra-

diate at temperatures nearly as warm as the sea surface,

while they reflect much of the abundant sunlight in the

subtropics (Hartmann and Short 1980). The massive

extent of subtropical Sc decks combined with their

strong cooling influence makes it essential that we un-

derstand the nature of their formation, mesoscale vari-

ability, physical processes, and eventual dissipation

(Wood 2012). In this work we establish a Lagrangian

framework following individual cloud samples within

the planetary boundary layer (PBL) over one complete

diurnal cycle in order to test the effects of several known

or hypothesized cloud-controlling variables.

Stratocumulus clouds in subtropical decks undergo a

life cycle lasting several days. Bretherton and Wyant

(1997) explained key aspects of the marine PBL struc-

ture and consequences for cloud evolution using amixed

layermodel. Quasi-permanent subtropical high pressure

systems advect air from the cool eastern subtropical

oceans to regions with warmer sea surface temperatures.

Marine Sc form in the shallow, cool PBL that forms

immediately offshore. Cloud tops emit longwave radia-

tion upward, cooling the air at the cloud top, and driving

overturning of the entire PBL (Lilly 1968; Nicholls

1989). The PBL is characterized as ‘‘coupled’’ or ‘‘well

mixed’’ when the radiatively driven circulation spans

from cloud top to the sea surface. As the Sc is advected

farther offshore and equatorward, entrainment of warm

dry air at the cloud top combines with increased latent

heating from warming sea surface temperatures (SSTs)

to deepen the PBL (Randall 1984; Krueger et al. 1995;
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Wyant et al. 1997). Eventually, the PBL can become

sufficiently deep to prevent the negatively buoyant

parcels at the cloud top from reaching the surface,

creating a cloud layer that is ‘‘decoupled’’ from the sea

surface. The mixed layer beneath the Sc-containing

layer continues to moisten, and cumulus (Cu) clouds

eventually form atop the mixed layer, protruding into

the Sc deck. The Sc deck eventually breaks up and is

replaced by the underlying Cu. There is a pronounced

diurnal cycle within this system favoring coupled PBLs

and more extensive cloud cover at night (Turton and

Nicholls 1987; Rogers and Koracin 1992; Eastman and

Warren 2014).

Prior studies show that numerous processes may act to

prolong or shorten the transition from Sc to Cu and that

cloud-controlling variables are frequently correlated. Sc

amount in the northeast Pacific Ocean was shown by

Klein et al. (1995) to be dependent upon sea surface

temperature and 750-hPa temperature 24–30h upstream

of the sampling location. Using a large-eddy simulation

(LES), Sandu and Stevens (2011) showed that the pace

of the Sc–Cu transition is primarily dictated by the

strength of the temperature inversion at the beginning of

the process, although they did not explore the range of

meteorological phase space that exists in nature. Their

simulations also suggest that precipitation and reduced

cloud-top cooling caused by increased downwelling IR

above the cloud deck can hasten the Sc–Cu transition.

Xiao et al. (2011), also using LES, concluded that PBL

decoupling due to surface evaporation is an important

factor in Sc breakup. Wood and Bretherton (2004) used

satellite data to show that strong entrainment is associ-

ated with deeper PBLs and that deeper PBLs are far

more likely to be decoupled. Wood and Hartmann

(2006) also used satellite data to show that PBL depth

plays a significant role in the physical and radiative

properties of marine Sc. Zhou et al. (2015) used field

data from theMarine ARMGCSS Pacific Cross-Section

Intercomparison (GPCI) Investigation of Clouds

(MAGIC) campaign over the northeast Pacific to show

that Sc breakup occurs downwind of decoupling and

suggested that the primary driver of decoupling is dry-

air entrainment at the top of the cloud layer, while

precipitation processes and surface latent heating were

less impactful. Mauger and Norris (2010) used a La-

grangian approach to find that a proxy for PBL decou-

pling and weak lower-tropospheric stability (LTS)

preceding observation both lead to reductions in cloud

cover. Myers and Norris (2013) used satellite cloud

data and reanalyses to show that stronger inversions lead

to reduced entrainment and more persistent clouds and

that increased large-scale subsidence shallows the PBL,

leading to fewer, thinner clouds.

Precipitation processes within Sc are complex, and

there is no general consensus about how precipitation

affects cloud and PBL evolution. Stevens et al. (1998)

showed that precipitation suppresses PBL turbulence

and can reduce the cloud liquid water path (LWP).

However, suppression of turbulence will reduce cloud-

top entrainment and might slow down the decoupling

transition. The model developed by Bretherton and

Wyant (1997) shows that drizzle acts as a stabilizing

force within the PBL, where condensing water vapor

releases latent heat at cloud top and evaporating rain

cools the subcloud layer. They concluded that rain

promotes decoupling in Sc decks—a conclusion first

suggested by Nicholls (1984) and Wang and Albrecht

(1986) and later substantiated by Mechem and Kogan

(2003) using a coupled ocean–atmosphere model.

Stevens et al. (2005) and Comstock et al. (2005) used

field data to show that precipitation may lead to in-

creased cloud-cover variability and the development

of ‘‘pockets of open cells’’ (POCS); however,

Burleyson and Yuter (2015) showed that cloud tem-

poral changes over 1–3 h are not particularly sensitive

to precipitation.

Klein et al. (1995) concluded that the Lagrangian

histories of Sc within themarine PBLmust be accounted

for in order to understand how clouds evolve. Pincus

et al. (1997), Sandu et al. (2010), andMauger and Norris

(2010) have carried out successful Lagrangian studies

using wind fields from model reanalysis and composited

satellite cloud data. Here, we use A-train satellite data

and environmental data from the reanalysis of the Eu-

ropean Centre for Medium-Range Weather Forecasts

(ECMWF) to follow 62 000 individual trajectories

within subtropical Sc regions over a 24-h period. We

group trajectories by the values of factors potentially

controlling cloud evolution to test whether cloud evo-

lution is sensitive to these factors.

2. Data selection

a. Using surface observations to select regions for
study

Stratocumulus clouds are most prevalent in regions of

large-scale subsidence over the subtropical eastern

ocean basins, and their breakup is critical for setting the

tropical albedo. Trajectory start points for this study

(red boxes in Fig. 1) are from the cool eastern sub-

tropical/tropical ocean regions where Sc clouds domi-

nate. Within these regions we follow individual cloud

scenes in easterly (offshore) flow under subtropical high

pressure ridges. We do not include midlatitude regions

in this study.
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Regions were chosen using a 108 3 108 grid of long-

term average, yearly mean, daytime Sc cloud amounts

from Hahn and Warren (2007). The box boundaries

shown in Fig. 1 represent the maximum extent of 11-

sigma or greater mean Sc amounts in each of the four

regions. Boxes were cut off at 308 latitude to exclude

midlatitude regions.

b. Calculating and sampling trajectories

We use the wind fields from the ECMWF interim

reanalysis (ERA-Interim) dataset (Dee et al. 2011) to

produce ;62 000 individual trajectories for all months

during the years 2007 and 2008. Our two-dimensional

forward trajectories are calculated using the same rou-

tine as in Bretherton et al. (2010, their Figs. 9c and 9d)—

that is, using horizontal wind fields at 925 hPa (i.e.,

within the PBL) with a spatial resolution of 0.758. Each
trajectory begins at a point along the CloudSat and

CALIPSO tracks. Points are chosen randomly along the

track, and must be at least 200 km apart. We sample

along the ascending and descending satellite tracks, so

our collection of trajectories includes 24-h changes from

day to day and from night to night. We include only

westward-propagating trajectories to eliminate the in-

fluence of eastward-moving weather systems; this elim-

inates about 16% of our observations.

Initial cloud samples are observed with CloudSat,

CALIPSO, MODIS, and AMSR-E (all introduced in

their own sections below) within a 100-km radius of the

trajectory start point. We then sample the same cloud

systems 12 and 24h later, within a circle of 100-km radius

about the advecting trajectory location. The trajectory

end points are sampled only withMODIS and AMSR-E,

as those instruments scan through sufficiently wide

viewing angles, increasing the likelihood that trajecto-

ries of varying distances will be resampled. Figure 2

shows an example trajectory, the mean winds, the radii

sampled, the initial CloudSat/CALIPSO and Aqua

subsatellite tracks, and the MODIS swaths at 0, 12,

and 24h.

c. Cloud-controlling variables

1) LOWER-TROPOSPHERIC STABILITY

We use the CloudSat ECMWF auxiliary dataset to

calculate the LTS for all of our initial samples.We define

LTS as the difference in potential temperature between

700 hPa and the 2-m air temperature.

2) PRECIPITATION FROM CLOUDSAT

Precipitation data come from the CloudSat 2C-

RAIN-PROFILE product (Mitrescu et al. 2010;

Lebsock and L’Ecuyer 2011). CloudSat uses a 94-GHz

nadir-looking cloud profiling radar with a resolution of

1.7 km along track, 1.4 km cross track, and 500m in the

vertical. The RAIN-PROFILE product contains a

‘‘precip_flag’’ variable that specifies whether a given

radar shot samples near-surface precipitation. We

classify a 200-km-long sample of the CloudSat track

surrounding the trajectory start point as ‘‘precipitat-

ing’’ if surface precipitation is detected in one or more

shots; otherwise the sample is labeled as ‘‘not precipi-

tating.’’ We calculate a precipitation frequency vari-

able for each sample as the percentage of profiles

within a 200-km-long sample with detectable near-

surface precipitation.

CloudSat also offers a ‘‘rain_rate’’ variable, measur-

ing the intensity of precipitation reaching the surface.

We multiply the intensity and frequency to create a

sample rain-rate variable to represent themean rain rate

falling over the entire 200-km sample.

The CloudSat swath samples only a narrow cut (cur-

tain) through our sampling circle. To test whether a cut

through a radar image is representative of the areal

average precipitation we use scanning C-band radar

data from the Eastern Pacific Investigation of Climate

FIG. 1. A smoothed contour plot showing the yearly average, daytimemean Sc amount (%) between 458N and 458S
from surface observations of stratocumulus clouds (Hahn andWarren 2007). Ocean data are the average for the period

1954–97 and land data are for the period 1971–96. Cloud amount is reported by surface observers either on ships or at

weather stations. The red boxes show our regions of study. We use only the ocean portions of the boxes.
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(EPIC; Bretherton et al. 2004), which took place in our

southeastern Pacific box (Fig. 1).

The CloudSat radar is able to estimate near-surface pre-

cipitation rates as low as;0.0015mmh21 (0.04mmday21)

according to a frequency distribution of rain rates

(per shot) for one month of data, corresponding to a

near-surface radar return of approximately 215dBZ

(Comstock et al. 2004; Z–R relationship from their

Fig. 1). Using 1670 EPIC C-band radar images (60-km

diameter) we compare the precipitation frequency de-

rived from a single cut to that from the entire area of

each image using a threshold reflectivity of 215dBZ.

There is a tight relationship (not shown) between cut

and area averages with a correlation coefficient of 0.91

and a slope very close to unity, demonstrating that

CloudSat cuts can represent areal average frequencies.

For higher-reflectivity thresholds (e.g., 0 dBZ), the cut-vs-

area relationship is less tight but still retains a correlation

coefficient of 0.84. Given that cut-based estimates explain

two-thirds or more of the variance in areally derived

precipitation frequency, we are confident that CloudSat

is able to estimate precipitation frequency for our trajec-

tory start point samples.

3) DETERMINING CLOUD-TOP HEIGHT WITH

CALIPSO

We use the Vertical Feature Mask product (VFM;

Vaughan et al. 2004) based on lidar backscatter data

from the Cloud–Aerosol Lidar with Orthogonal Polar-

ization (CALIOP) on the Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO)

to infer PBL depth at the beginning of each trajectory.

CALIOP samples are more or less collocated with

CloudSat samples. We restrict CALIOP data to the

lowest 3 km only, where each individual CALIOP pro-

file represents a 90-m-long footprint separated by 330m.

Each 200-km-long sample collocated with CloudSat

contains;600 individual VFMprofiles. For Sc fields, the

cloud tops sit just below the base of the inversion de-

lineating the PBL top, and for Cu fields the highest Cu

cloud tops sit at or below the trade inversion. For each

individual lidar profile, the altitude of the highest

‘‘cloud’’ return within the lowest 3 km is used and is

combined with the other lidar profiles in the sample to

estimate a single value of PBL depth for the entire

sample. In some cases this is straightforward (e.g.,

Fig. 3a), while in other cases it is more challenging to

discern as shown in Fig. 3b. The red line indicates the

PBL depth assigned to the samples in Fig. 3a and 3b. To

determine the PBL depth for each sample, we use the

distribution of cloud-top heights within the sample (e.g.,

Fig. 3c). This distribution may contain multiple peaks,

indicatingmultiple cloud-topmaximawithin the sample.

Peaks within the distribution are considered relevant if

they are at least 40% as populated as the largest peak.

The PBL depth for the sample is assigned to the relevant

peak with the highest altitude. In the case of Fig. 3c the

largest peak is also the highest relevant peak, at around

1.9 km. We choose this method in order to minimize the

number of cases where we assign cloud tops to trade

cumulus coinciding with small amounts of remaining

overlying Sc. The 40% threshold was chosen as most

suitable after visual inspection of hundreds of samples

using a variety of thresholds. If no clouds are present in

the sample (,5% of samples) the PBL depth cannot be

determined and no value is assigned. Samples with un-

assigned PBL depths are used only in analyses that do

not take PBL depth into account.

FIG. 2. An example 30-h trajectory from the northeast Pacific beginning 1059 UTC 6 Jan 2007. The trajectory is shown in black. The

gray arrows represent the mean wind field at 925 hPa. (top) The black dashed line shows the CloudSat/CALIPSO track. The 100-km

sampling radius is shown by the circles in each frame. The Aqua satellite track (carrying both MODIS and AMSR-E instruments) is

shown by the solid colored lines. The MODIS swath is shown by the colored regions surrounding the Aqua track. Only MODIS data

from Aqua are used.
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d. Time-evolving cloud properties

1) CLOUD COVER

Cloud cover is estimated from the cloud masks in

the gridded Aqua MODIS level 3 (MYD08-D3)

dataset (Hubanks et al. 2008; Oreopoulos 2005). Day

and night cloud covers are available on a 18 3 18
latitude–longitude grid, taken approximately at 1330

and 0130 local time, respectively. A 18 3 18 grid box is

included in a sample if its center falls within 100 km

of a location along a trajectory at the satellite overpass

time. Cloud cover is expressed in units of absolute

percentage.

To sample nearly all of Earth in a single day, the

MODIS sensor relies on a very wide scanning pattern,

with a maximum viewing zenith angle of ;678. Maddux

et al. (2010) showed that the retrieved daytime visible

cloud cover at the largest viewing zenith angle was

;14%greater than for scenes viewed at nadir because in

oblique views both the sides and tops of clouds are seen.

The CloudSat and CALIPSO satellite tracks are offset

from theAqua satellite track by;215km at the equator.

Consequently, our initial (0 h) samples are always ob-

served with a;198 satellite zenith angle by MODIS, but

our 12- and 24-h observations are usually viewed at

considerably wider angles. If no correction were made

for the change in zenith angles between 0-h and later

observations, we would show, on average, an erroneous

increase in cloud cover as we followed our trajectories.

Figure 4 shows how we remove the zenith angle bias.

We limit this analysis just to our study regions because

the zenith angle bias could look different in other re-

gions where cloud thickness and vertical structure are

different. We show separate curves for day and night.

The vertical error bars are centered on the mean cloud

cover and show the standard error of the mean for seven

zenith angle bins. Mean cloud cover is shown for each

108 zenith angle bin (08–108, 108–208, . . ., 608–678).
Curves are the polynomial fits to the means. We assume

no bias when MODIS is looking straight down, so the

bias at nadir is 0%, and at 678 the bias is;5.5% at night

and ;13% during the day.

FIG. 4. The mean cloud amount and standard error for each 108
zenith angle over the regions shown in Fig. 1. Polynomial fits to the

mean cloud amounts are shown as black, red, and blue curves. The

red and blue3 symbols show how precipitating trajectories (blue)

are observed at lower zenith angles after 24 h compared to non-

precipitating trajectories (red).

FIG. 3. (a),(b) Plots of CALIPSO VFM ‘‘cloud’’ returns within

the marine boundary layer for two separate samples. The red lines

[dashed in (b)] indicate the cloud-top height assigned using our

routine. The two dashed lines in (b) show the heights of the other

two lower-altitude relevant peaks in the frequency distribution.

Our routine assigns the boundary layer depth to the highest rele-

vant peak. (c) The frequency distribution for cloud-top heights

from (b) is shown.
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Zenith angle data were available from MODIS only

during daytime, requiring us to estimate the nighttime

sensor zenith angle based on a grid box’s distance from

the satellite track. Figure 4 shows the cloud amount

based on estimated (red) and actual (blue) zenith angles.

The overlap of the red and blue curves shows that our

estimated zenith angles match the reported angles very

closely. Data for the black line (night) rely only on es-

timated zenith angles. The difference between the red/

blue curves and the black curve shows that the zenith

angle bias is markedly different between day and night

because of the different MODIS cloud masks used

during day and night and because nighttime cloud scenes

are far more likely to be homogeneous.

All cloud-cover estimates have the zenith angle bias

removed based on the sample-mean sensor zenith angle.

An example of how the zenith angle bias could impact

our results is shown by the red and blue 3 symbols on

Fig. 4. Blue 3 symbols show the mean zenith angle at

24 h for initially precipitating trajectories while red 3
symbols show the mean zenith angle, also at 24 h, for

nonprecipitating trajectories. The angles are different

because precipitating trajectories tend to originate far-

ther offshore and travel farther to the west, so they are

sampled at a lower angle the following day. The differ-

ence between the two mean angles is 78, overall biasing
the percent cloud cover at 24 h for nonprecipitating

samples high by 0.9% during the night and 2.2% during

the day, both significant in the context of our results.

We use daytime cloud data from the MODIS L3 op-

tical properties dataset to remove ice clouds and mixed-

phase clouds from the analysis. The L3 dataset

provides a measure of ice cloud cover, unknown cloud

cover, liquid cloud cover, and single-layer liquid cloud

cover. For each trajectory we use only those observa-

tions that satisfy three criteria: 1) single-layer liquid

cloud cover is equal to the total liquid cloud cover, 2) the

unknown cloud cover is zero, and 3) the ice cloud cover

is zero. This filter is applied for all trajectories during

daytime, so 24-h trajectories beginning at night are fil-

tered once during the day, while 24-h trajectories be-

ginning during the day are filtered at their beginning and

again at their end. Sensitivity to this filter is small be-

cause of our selection of regions which have few high

and midlevel clouds. Figures using filtered results are

labeled accordingly.

2) DROPLET CONCENTRATION FROM MODIS
OPTICAL PROPERTIES

LWP and cloud droplet effective radius re are avail-

able for daytime only and come from the cloud optical

properties product within the MODIS level 3 dataset

(King et al. 2003). MODIS LWP values are for cloudy

retrievals only and are not an areal average. Both LWP

and re display zenith angle biases. For sensor zenith

angles between 08 and 658, LWP shows a bias at wide

angles of 20.01 kgm22, and re shows a bias of 1.2mm.

Themean value of LWP is;0.085 kgm22, and the mean

of re is ;16.7mm, for all regions and seasons combined.

After removing the zenith angle biases, we use these two

variables and the relationship in the following equation

(Boers et al. 2006; Bennartz 2007) to estimate effective

cloud droplet number concentration Neff specifically for

clouds in the marine PBL:

N
eff

5
ffiffiffi

2
p 3

4
pr

v
G1/2
eff

LWP1/2

r
e
(h)3

, (1)

where rv is the density of liquid water; Geff 5Gadfad, with

Gad as a measure of the adiabatic rate of increase in

liquid water content with respect to height and constant

fad is an estimate of the degree of adiabaticity; and h is an

estimate of cloud thickness. We then calculate droplet

concentration with the relationship: Nd 5 Neff/k, with k

assumed to be 0.8 for marine stratiform clouds (Martin

et al. 1994; Wood 2000).

3) LWP USING AMSR-E

The Advanced Microwave Scanning Radiometer for

Earth Observing System (EOS) (AMSR-E) provides

separatemeasures of LWP for day and night (Wentz and

Meissner 2004), unlike the daytime-only MODIS LWP.

The AMSR-E instrument is a passive-microwave radi-

ometer carried aboard the Aqua satellite along with

MODIS, providing concurrent sampling of cloud cover

and LWP. The AMSR-E measures brightness temper-

atures at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0GHz. The

instrument has a swath width of 1450km, corresponding

to a maximum viewing zenith angle of ;468. We

performed a zenith angle test for the AMSR-E LWP

data in the same way as the MODIS data described

above but did not find a significant zenith angle bias.

AMSR-E level 3 data are averaged to match the 18 3 18
grid of the level 3 MODIS data. After averaging, our

sampling routines are identical for AMSR-E and

MODIS. For the AMSR-E data we use the screening

process described at the end of section 2d(1) to remove

cases with ice and mixed-phase clouds based onMODIS

(see above), which is coincident withAMSR-E.AMSR-E

LWPvalues are area averaged, so they include cloudy and

clear pixels.

3. Methods

The goal of this Lagrangian study is to assess

whether the proposed cloud-controlling variables
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(lower-tropospheric stability, PBL depth, and pre-

cipitation, all described in section 2c) affect the tem-

poral evolution of cloud properties (cloud cover, LWP,

and droplet concentration, described in section 2d)

relative to the climatological-mean evolution. Basi-

cally, this means we want to see which variables

(sampled at trajectory beginning, hour 0) lead to

anomalous cloud breakup or persistence. Since all

three cloud-controlling variables are somewhat corre-

lated we use a binning routine, described below, to

isolate the effects of each variable.

To reduce biases caused by geographic, seasonal, and

diurnal effects when comparing cloud evolution, we

convert all evolving cloud property data to seasonal and

diurnal anomalies by subtracting the mean seasonal and

diurnal cloud values of the property in question. For

cloud cover and LWP, for which both daytime and

nighttime data are used, the seasonal-mean removal is

carried out separately for daytime and nighttime data.

For cloud droplet concentration, anomalies are sub-

tracted for daytime data only. Seasonal means are esti-

mated using all data from 2007 to 2008. Seasons are

defined as December–February, March–May, June–

August, and September–November.

For a given trajectory, the 24-h Lagrangian temporal

change of a cloud property anomaly is given the symbolD.
Thus, DCCA, DLWPA, and DNdA refer to the La-

grangian temporal changes in cloud cover, liquid water

path, and cloud droplet concentration anomalies over

24 h. To compare the effects of cloud-controlling vari-

ables on cloud temporal evolution, we first estimate the

changes in cloud property anomalies at all points along

each trajectory. In other words, theD-anomaly approach

quantifies whether the cloud property evolution along a

given trajectory is occurring more or less rapidly than

the climatological average evolution.

Time changes for day–day evolution and night–night

cloud evolution are estimated separately and then

compared in order to assess any diurnal asymmetry.

There is considerable spread in the magnitude of cloud

property anomalies (not shown), but these are distrib-

uted around a mean value that is zero by construction.

a. Illustrative case of cloud-cover anomalies grouped
by LTS

As an experiment, we can group trajectories accord-

ing to the value of one of the cloud-controlling variables

to assess whether cloud property anomalies for the tra-

jectory subgroups evolve more or less rapidly than the

climatological evolution. As an example, Fig. 5 shows

distributions of CCA grouped by whether LTS at the

trajectory start point is higher or lower than its clima-

tological average at that location. Although there is

considerable spread for both high- and low-LTS sets,

differences are apparent. The above-mean-LTS trajec-

tories show a somewhat tighter spread and a higher

median CCA throughout the evolving 24-h trajectory

(Fig. 5).

To test whether the high- and low-LTS trajectories

show statistically significant differences in mean cloud-

cover anomalies, we estimate standard errors (two sigma)

for all day and night CCAs at 0, 12, and 24 h for any

group of trajectories assuming that any contributing

trajectory is independent of the others. The two-sigma

standard error bars for high and low LTS are signifi-

cantly separated (Fig. 6a). This shows that initially high

LTS is on average significantly associated with above

normal cloudiness and vice versa, consistent with pre-

vious studies (e.g., Klein and Hartmann 1993). The

mean CCA of all trajectories (shown in black in Fig. 6a)

shows a slight increase over time, which we believe to be

an artifact likely caused by some remaining zenith angle

bias, but is sufficiently small in magnitude to have little

impact on the significance of the comparison. The zenith

angle bias may have an average effect of around 1.5%,

while the separation between mean CCA values for

high- and low-LTS subsets is closer to 3%–6%. In Fig. 6b

we subtract the mean anomaly for all trajectories so we

are comparing the behavior of the subsets relative to the

mean of all trajectories. In the remainder of this manu-

script, we perform this additional subtraction for all

evolving cloud properties.

In the legend of Fig. 6b, we show the 24-h change in

CCA (i.e., DCCA) for each subset relative to the mean

FIG. 5. Box plots showing the median CCA (middle horizontal

line), 25th and 75th percentiles (box edges), and extent of the

most extreme data points that are not outliers (dashed whiskers).

Trajectories are separated by whether they begin with above- or

below-zero LTS0.
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DCCA for all trajectories. The numbers show a curious

discrepancy with our expectations. That is, on average,

DCCAs in more stable environments are negative and

DCCAs in less stable environments are positive. This

result is not consistent with previous findings, which

tend to support the opposite conclusion—namely, that

cloud cover in the less stable environment should de-

cline relative to the more stable environment.

The above inconsistency is the result of our failure to

take into account the difference in initial CCAs between

the high- and low-LTS trajectory groups. Initial CCAs

are significantly greater in stable environments (Fig. 6a).

As a thought experiment we can consider an extreme

version of this effect using two groups of trajectories:

one group has only trajectories with completely clear

skies (0% cloud cover) at the beginning and the other

group has only overcast cases (100% cloud cover) at the

beginning. Because of the bounded nature of cloud

cover, each of these groups can either show no change or

evolve in one direction only. The only realistic outcome,

unless there is no evolution at all, is that the mean DCC
of the two groupsmust evolve such that the initially clear

group shows a mean increase in cloud cover and the

overcast group shows a decrease. Anomalies are simi-

larly bounded: an anomaly of 2100% can only increase

in time, while an anomaly of1100% can only decrease.

This limitation puts bounds on how cloud cover can

evolve for any starting anomaly. This is discussed further

in appendix A.

Evidence of this bounding for both LTS groups is seen

in scatterplots (Fig. 7), in which DCCA over 24h is

plotted against the beginning CCA, with trajectories

color coded by whether they are high- or low-LTS tra-

jectories. There is considerable spread in the plots,

but both high- and low-LTS groups show a nega-

tive relationship with correlation coefficients r of

approximately20.62 and slopes of approximately20.74

(both r and the slope are the same for high- and low-LTS

sets). Thus, on average, positive initial CCAs tend to

become less positive while negative initial CCAs tend to

become less negative. The high- and low-LTS scatter-

plots in Fig. 7 look indistinguishable, but our samples

sizes are large enough (only 1 in 90 trajectories are

shown) to search for subtle but statistically significant

differences between the two samples.

In Fig. 8 we show the mean and standard error of 24-h

DCCA for six bins of beginning CCA for high- and low-

LTS trajectory groups. For each group, we also show the

initial mean CCA along the bottom and the corre-

sponding mean DCCA at the right. For each beginning

CCA bin the corresponding DCCA is significantly

greater for the high-LTS group, now agreeing with prior

observations showing that cloud cover is more persistent

in stable environments. The unbinned mean DCCA
values on the far right show exactly opposite behavior.

This is because the difference in mean initial CCA for

the high- and low-LTS groups is large enough to obscure

FIG. 7. A scatterplot of 24-h DCCA24 (%) vs their beginning

CCAo (%). We show a point only for every ninetieth trajectory to

avoid excessive clutter.

FIG. 6. (a)Mean and two-sigma standard error for CCA (%) at 0,

12, and 24 h for all trajectories, and trajectories with above- or

below-zeroLTS0 at 0 h. (b)As in (a), but with themean evolution of

all trajectories [black line from (a)] subtracted from all plots in (a).
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the actual signal given the negative CCA–DCCA
relationship.

The true difference between DCCA for high- and low-

LTS groups is shown by the separation between the

high- and low-LTS confidence intervals in Fig. 8. To

better display this difference, we perform a robust linear

regression to remove the slope from both samples, with

the resulting Fig. 9 showing the differences once the

linear trend is removed. Slopes are estimated separately

for the high- and low-LTS lines, one slope estimate per

high or low set. We can now compare the mean residual

DCCA values between the high- and low-LTS groups for

all bins (far right of Fig. 9), where the separation be-

tween those values reflects the mean vertical separation

between the high- and low-LTS sets in Fig. 8.

The lines in Fig. 8 show that on average the 24-h

DCCA results in a partial reduction of the initial

anomaly. The same behavior is found for the other

evolving variables (not shown). The rate at which

anomalies decay is discussed at length in appendix A. If

the means of the residual D-anomaly values (e.g., D
cloud-cover anomaly,DLWP anomaly, orDNd anomaly)

for different trajectory groups (e.g., groupings condi-

tioned on values of cloud-controlling variables) are

shown to be significantly distinct using this method, we

will conclude that the groups evolve differently and that

the cloud-controlling variable is a useful determinant of

the magnitude of the cloud evolution. In appendix B, we

show that alternative methods exist to achieve quanti-

tatively similar results.

b. Untangling correlations between cloud-controlling
variables

Apotential source of indeterminacy in this study is the

correlation between cloud-controlling variables. All

three of our variables are correlated with one another to

some extent. Precipitation rate and frequency correlate

positively with PBL depth while precipitation rate

correlates negatively with LTS anomalies. PBL depth

correlates negatively with LTS anomalies. This is

problematic because we want to assess whether these

variables individually affect DCCA. To separate the

effects of variables, we introduce a binning routine

comparing residual DCCA for two groups of trajectories

within bins of a constant second controlling variable to

remove the confounding effect of the second variable.

The positive correlation between PBL depth and

precipitation shows why this binning is necessary. Pre-

cipitation is more common in deep PBLs and without

taking that into account we could draw the erroneous

conclusion that precipitation is causing Sc breakupwhen

the real cause may be decoupling due to a deeper PBL.

This binning routine will allow us to look at the effect of

precipitation with PBL depth held relatively constant.

FIG. 8. Two-sigma standard error bounds around the mean 24-h

DCCA averaged for six bins of initial CCA for trajectories with

initial LTS0 above and below zero. The overall (nonbinned) mean

DCCA for both sets is shown on the right, curiously oriented op-

posite to the orientations of the two lines. The overall mean initial

CCA for both sets is shown along the bottom, illustrating the sig-

nificant difference between the mean starting anomalies. The

dashed vertical line separates the mean values from the rest of the

figure, indicating that the x axis does not apply to those points,

which are for all x values.

FIG. 9. Two-sigma standard error bounds around the mean re-

sidualDCCA for the same six bins and trajectory groups as in Fig. 8.

Residual values are based on the plots in Fig. 8 with the average

linear dependence on initial CCA removed. On the far right we

show the two-sigma standard error bounds for the mean residual

DCCA for all bins for both sets of trajectories. Significant separa-

tion between overall means is apparent, and this time the orien-

tation agrees with that of the two plots.
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Trajectories are separated into two groups—above- and

below-median initial precipitation rate—and we then

plot DCCA values for four bins of PBL depth (Fig. 10a).

The two lines in Fig. 10a show significant separation in

mean DCCA for the two sets across all four PBL depth

bins but the different initial CCA distributions for the

two trajectory groups have not been accounted for.

Figures 10b–e show DCCA as a function of initial CCA

for both sets of trajectories within each bin of PBL

depth, similar to Fig. 7. Figures 10f–i show the mean

FIG. 10. (a) 24-h DCCA values plotted as a function of their initial PBL depth for two sets of trajectories. Sets are separated by whether

they have above- or below-median rain rates at hour 0. We show only every thirtieth value to avoid clutter. The mean and two-sigma

standard errorDCCA for each bin of initial PBL depth is also shown. (b)–(e) 24-hDCCAvalues plotted against their 0-h values within each

PBL depth bin (1–4, respectively) for each set of trajectories. (f)–(i) The mean DCCA for four subbins of initial CCA within the four bins

of initial PBL depth (1–4, respectively). Linear fits were applied to each plot individually, and the slopes were removed to produce the

residuals at the bottom of each frame. (j) The average of each set of residuals within each PBL depth bin is shown. The mean residual

DCCA for each bin of PBL depth for each set of trajectories with two-sigma standard error bounds also shown. The significant separation

seen in (a) is entirely gone when we account for the relationship between DCCA and initial CCA.
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DCCA for initial CCA bins, with Fig. 10j showing the mean

residuals per PBL bin after the slope between DCCA and

initial CCA has been removed (as in Figs. 8 and 9, respec-

tively). Slopes are fitted separately for each subset within

each PBL depth bin. The lack of significant separation be-

tween the two groups shows that precipitation is a less sig-

nificant factor in Sc breakup when the initial distribution

and PBL depth are taken into consideration. We have also

calculated our results using slopes fit to all available data

points, not just the subsets within bins, producing virtually

identical results. This indicates that the DCCA versus CCA

slope is, on average, consistent across all subsets.

Results for this paper use this approach throughout,

but to conserve space we only show the equivalent of

Fig. 10j in subsequent plots.We alter the binning routine

to keep the number of trajectories per controlling vari-

able bin constant rather than requiring bin boundaries to

be evenly spaced as in Fig. 10. In appendix B we show

two other routines that produce quantitatively similar

results to our linear regression method.

Here, we limit our analysis to the effects of LTS, PBL

depth, and precipitation rate on cloud evolution. We

choose these three because each has been identified

from previous studies as being potentially important for

cloud evolution. Stronger LTS leads to less cloud-top

entrainment, whereas deeper PBLs tend to be decou-

pled leading to altered moisture and aerosol sources,

and precipitation drives changes to the thermodynamic

structure in the PBL and can remove aerosols and im-

pact cloud droplet concentration.We do not suggest that

the three controlling variables being evaluated here are

exhaustive, and future study will explore others.

4. Results

Trajectories are separated into groups determined by

whether the initial values of LTS, PBL depth, or pre-

cipitation rate are high or low. Confidence intervals of

residual values of DCCA (Fig. 11), DLWPA (Fig. 12),

and DNdA (Fig. 13) for the two groups are shown as a

function of a second controlling variable along the ab-

scissa. Bins are not uniform, but are instead chosen to

have equal numbers of trajectories per bin (four bins,

each with 25% of the trajectories). Below, we discuss

each figure in turn.

FIG. 11. (a),(b) Residual 24-h DCCA for bins of constant

boundary layer depth, (c),(d) LTS0, and (e),(f) rain rate. Trajec-

tories are broken into two sets for each plot, with high (.0) and low

(,0) LTS0 in (a) and (f), above- and below-median (;0.01mmh21)

rain rates in (b) and (d), and shallow (,1.5 km) vs deep (.1.5 km)

boundary layers in (c) and (e). Lines are the two-sigma standard

error bounds for each mean value. Bins are not uniform but are

instead chosen to have equal numbers of trajectories per bin, with

25% of all trajectories in each bin. Dots indicate bin centers.

FIG. 12. As in Fig. 11, but for residual 24-hDLWPA.We use only

observations with no high or middle clouds and no multilayer

clouds.
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a. D cloud-cover anomalies

The strong dependence of DCCA on PBL depth is

clear, and for a given PBL depth, cloud cover is also

more persistent when LTS is strong (Fig. 11a). This

implies that positive LTS anomalies significantly sup-

press cloud breakup until PBL depth exceeds 2 km,

where the LTS effect appears less significant. Figure 11b

suggests that the effects of precipitation are not nearly as

strong as LTS when PBL depth is accounted for. At best

the evidence suggests that higher rain rates in deeper

PBLs may lead to marginally more rapid cloud breakup.

The offset along the abscissa of the two groups in

Fig. 11b indicates that precipitation tends to be more

frequent in deeper PBLs, which is consistent with pre-

vious findings (e.g., Bretherton et al. 2010; Wood 2012).

Without controlling for PBL depth, precipitation could

falsely appear to be a major contributing factor in Sc

breakup.

Residual DCCA for bins of constant LTS anomalies

are shown in Figs. 11c and 11d. Both plots show a pos-

itive slope, confirming that LTS is a significant factor in

cloud breakup, with positive LTS anomalies associated

with more persistent clouds. Figure 11c shows that PBL

depth is an independent factor in cloud breakup when

LTS is held constant. Figure 11d shows little separation

for above- and below-median precipitation, espe-

cially when LTS is high, once again suggesting that

precipitation is less of a factor in cloud-cover evolution

compared to PBL depth and LTS. The measure of pre-

cipitation used here is but one metric, however, and in

section 4e we will investigate other metrics.

Figures 11e and 11f show residual DCCA for bins of

constant precipitation rate. This result verifies the find-

ings in the other panels, namely that LTS and PBL depth

are more significant factors in cloud breakup compared

with precipitation, and that clouds persist in shallow

PBLs and in environments with high LTS. Three of the

four slopes in Figs. 11e and 11f are negative, possibly

indicating that heavier precipitation rates may slightly

favor cloud breakup, but these slopes are not as strong as

the slopes in Figs. 11a–d. We investigate this further in

section 4e.

b. DLWP anomalies

Figure 12 follows the same template as Fig. 11, but for

DLWPA. The evolution of areal-mean LWP behaves

only slightly differently than the evolution of cloud

cover in terms of sensitivity to controlling variables. LTS

anomalies show only weakly significant effect on

DLWPA evolution within bins of constant PBL depth,

with overlap seen between error bounds (Fig. 12a).

The relationship between LTS anomalies (LTS0) and

DLWPA agrees with the relationship between LTS0 and
DCCA, with high LTS associated with more cloud

and with marginally more LWP. Precipitation shows a

somewhat stronger relationship with LWP than with

cloud cover (Figs. 12b,d). Rain may lead to a relative

reduction in LWP in deeper PBLs (Fig. 12b). PBL depth

has a similar effect on LWP as on cloud cover, with a

tendency for increased LWP in shallow PBLs (Figs. 12c,e).

The increasing LWP anomalies in shallow PBLs are very

likely due to the boundary layer deepening over time,

while the decrease in LWP for deep PBLs likely is due to

the cloud breakup.

c. DNd anomalies

Figure 13 again follows the template of Figs. 11 and 12,

but for residual DNd anomalies (DNdA). Since Nd de-

clines climatologically as trajectories advect offshore,

most positive residual DNd anomalies are showing tra-

jectories where Nd fails to decline, meaning an envi-

ronment of persistent droplet concentration. The

evolution of Nd is strongly dependent on PBL depth for

PBLs shallower than 1.5 km (Figs. 13a,b). In shallow

PBLs, Nd is generally more persistent, but is also de-

pendent on LTS and precipitation, with higher stability

and less precipitation associated with persisting Nd

anomalies. The evolution of Nd in deeper PBLs is not

significantly affected by LTS or precipitation, and Nd

shows consistent relative declines in PBLs deeper than

FIG. 13. As in Fig. 11, but for residual 24-h DNdA.
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1.5 km (Figs. 13a,b). This is reinforced by Figs. 13c,e,

which both show consistent, slightly negative residual

DNdA in deep PBLs, but positive relative changes in

shallow PBLs. Slopes of the shallow PBL plots (black

curves in Figs. 13c,e) agree with our interpretation that

rain and low LTS both lead to relative declines inNd, as

long as the PBL is shallow.

d. Regional differences

We have carried out the DCCA analysis described in

the prior three subsections for each of our regions

(Fig. 1) individually. We choose two of our regions—the

southeastern Pacific (Fig. 14) and the eastern Indian

Ocean (Fig. 15)—because they exhibit somewhat dif-

ferent behavior relative to the all-region aggregates

shown in Fig. 11.

Figure 14a shows agreement with our prior results:

low LTS is associated with cloud breakup. The pre-

cipitation rate breakdown (Fig. 14b) shows a distinctly

different relationship for this region: clouds may persist

with increased precipitation, especially in shallower

PBLs, though the sample size is small and significance

becomes marginal. Figures 14c and 14d show trajecto-

ries grouped by PBL depth and above- and below-

median rain rate, respectively, for bins of constant

LTS anomaly. An initial view of the relationship in

Fig. 14c suggests that PBL depth may have an opposite

effect on DCCA over the southeastern Pacific relative to

the all-region mean. However, that relationship is likely

muddied by the inverse relationship between pre-

cipitation and DCCA. Figure 14e shows that PBL depth

has little effect on DCCA when there is very weak or no

precipitation but that deep PBLs still tend to break up

more readily when rain rate is positive and held con-

stant. Figure 14d again shows that higher rain rates over

the southeast Pacific lead to cloud persistence.

Figure 15 shows that rain appears to contribute more

strongly to cloud breakup in the eastern Indian Ocean

than in other regions, and PBL depth may have a

stronger contribution to cloud breakup compared to

LTS, which differs from the order shown for all regions,

though the strength of the relationship in Fig. 15cmay be

buoyed by the stronger precipitation effect. Figures 15e

and 15f show a pronounced negative slope for all plots,

again showing that increased rain rate appears to be

associated with Sc breakup in the southeast Indian

Ocean.

We do not show regional breakdowns for LWP and

Nd. Liquid water path does not show consistently sig-

nificant results when broken down by region. LWP

shows the widest error bars and least separation be-

tween sets (e.g., Fig. 12) and this is exacerbated with

FIG. 14. As in Fig. 11, but for residual 24-h DCCA for the southeast

Pacific region only.

FIG. 15. As in Fig. 11, but for residual 24-h DCCA for the east

Indian Ocean only.
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smaller sample sizes for a regional breakdown. This

abundance of error is mostly due to the high cloud filter.

Results for Nd evolution for each region are much more

consistent, with all of the aforementioned relationships

remaining intact even when broken down by region.

e. Sensitivity to aspects of precipitation

There are different aspects of precipitation that might

influence PBLs in different ways. For example, Wang

and Feingold (2009) find that heavy precipitation

reaching the surface is what causes a transition from

closed to open cells. Further, Terai et al. (2014) find

similar cloud base precipitation rates inside and outside

POCs on average, but markedly higher rates in open

cells at the surface. We explore this further in Fig. 16,

which excludes any nonprecipitating trajectories, and

shows residual DCCA against PBL depth for three tra-

jectory groups with low, moderate, and heavy pre-

cipitation rate. These results suggest that precipitation is

associated with cloud persistence in shallow PBLs but

with breakup in deeper PBLs provided the rain rate is

high enough. Trajectories starting with low rain rates

(green) show a lower slope than for trajectories starting

with moderate and heavy rain rates (blue and black).

Increasing the rain rate appears to lead to a steeper

negative slope, which means that heavier rain in a

shallow PBL leads to more cloud persistence while

heavier rain in a deeper PBL leads to more rapid cloud

decreases. It is possible that the heavier rain in persis-

tently cloudy shallow PBLs is a symptom of a stronger

overturning circulation, acting to sustain the cloud deck

and drive stronger precipitation. For deeper PBLs it is

possible that high rain rates simply act to remove liquid

from decoupled stratocumulus decks, leading to faster

breakup because the cloud deck is partially cut off from

its moisture source.

A diurnal breakdown (not shown) indicates that the

relationships shown in Fig. 16 are predominantly noc-

turnal, and during the day the different rain-rate curves

are not statistically significant from one another.

Despite a lack of statistical significance, the general

trend of heavier precipitation acting to break up clouds

regardless of PBL depth is observed during daytime.

The majority of precipitating trajectories begin at night,

so this effect could be real, or could be due to insufficient

daytime observations. If real, it is possibly because

nighttime PBLs are more strongly coupled than daytime

PBLs owing to the stronger radiatively driven circula-

tion at night. The shallower PBLs seen on the left side of

Fig. 16 may represent well-mixed PBLs at night, but the

majority of them may become stratified or decoupled

during the day, leading to the observed difference in

precipitation effects.

We examined a simpler version of Fig. 16 for each

region (not shown), with trajectories grouped by above-

or below-median rain rate. All regions show the same

pattern of negative slopes seen in Fig. 16, again with the

heavy-rain-rate group showing a more negative slope in

each region. Once again, this suggests that a higher rain

rate may lead to more persistence in shallow PBLs but

may cause breakup in deeper PBLs.

5. Discussion

In this work, we have examined cloud temporal evo-

lution as a function of several different potentially

cloud-controlling variables. In doing so, we were forced

to make a number of decisions regarding trajectory

duration, sampling radius around trajectory points,

choice of controlling variable bins, etc. We have repro-

duced many of our results with different choices to as-

certain the robustness of our findings.

First, we explored using sampling radii of 100, 200,

400, 800, and 1600km. A radius smaller than 100 km is

not suitable owing to possible errors in the wind fields

that generate trajectories. A typical trajectory travels

about 600km in a day (average speed of 6.9m s21). A

pessimistic error estimate in wind speed of 1m s21

translates to a possible position discrepancy of;170km

in a day. To ensure that we sample at least some of the

same clouds at 0 and 24 h, we need a sampling radius

FIG. 16. Residual DCCA for bins of constant PBL depth. Tra-

jectories are divided into three groups based on the sample-mean

rain rate at the beginning of the trajectory: below-median rain rate

(green), ‘‘moderate’’ rain rate (blue), and ‘‘heavy’’ rain rate

(black). Lines show the standard two-sigma standard error bounds

of the mean residual DCCA. Bins are not uniform but are instead

chosen to have equal numbers of trajectories per bin, with 33% of

the trajectories from each group in each bin.
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exceeding 85 km. Hence, in this work we used 100 km.

Repeating our analysis using larger sampling radii, the

results remain qualitatively unchanged, although statis-

tical significance improves.

We chose also to show results only for 24-h changes

in order to observe a complete diurnal cycle. We ex-

amined separately trajectories restricted to day–day

or night–night evolution to test for asymmetries. When

we restricted our analysis this way, the results were qual-

itatively unchanged for Figs. 11–13. The only diurnal

effect of note was for precipitation rate as discussed

above in section 4e.

Thresholds were also chosen to group trajectories by

values of PBL depth and precipitation rate. Our

threshold values reflect a compromise between a need to

separate variables by their physical effects but also keep

numbers comparable between sets of trajectories.

Across all trajectories median and mean PBL depth are

1.45 and 1.50 km, respectively. We do not use anomalies

for PBL depth because the degree of decoupling is re-

lated to the absolute PBL depth (Wood and Bretherton

2004). Several threshold values were tested between 1

and 1.5km, with 1km being closer to the depth where

decoupling begins to be observed (Wood and Bretherton

2004). For any threshold between 1 and 1.5km, our PBL

depth results were qualitatively identical; we choose the

high value of 1.5km to keep the number of trajectories

even between groups. PBL depth does show a diurnal

cycle but this is small compared with the range of depths

across the entire trajectory set. We took a similar ap-

proach for rain rate.

6. Conclusions

In this work, we describe a method to quantify the

time evolution of low-cloud properties (cloud cover,

LWP, and cloud droplet concentration) along La-

grangian boundary layer trajectories and explore the

impact of several potentially cloud-controlling vari-

ables on this evolution. Biases caused by seasonal and

geographic effects are reduced by using seasonal,

location-specific anomalies for all three cloud proper-

ties. Satellite (viewing) zenith angle biases are identified

and removed. Cloud property changes are examined

over 24 h. Most importantly, we show that the average

time change in cloud properties is strongly related to the

initial cloud amount, consistent with anomalies evolving

as autocorrelative red noise processes.We show that it is

necessary to derive a residual D-anomaly variable that

allows us to more directly compare cloud evolution in

groups of trajectories with differing initial cloud prop-

erty values. The linear relationship between initial

values of the anomalies and their time changes will be

explored further in future work to examine decorrela-

tion time scales for low-cloud fields.

Low-cloud evolution is modulated by several factors.

Changes in cloud cover (and likely albedo) appear to be

affected more by PBL depth and lower-tropospheric

stability than by precipitation. Clouds in deeper PBLs

and in less stable environments appear to break upmore

readily than clouds in shallow PBLs or stable environ-

ments. The result that clouds in deeper PBLs tend to

break up more quickly, although expected from our

basic theory of decoupling and breakup (Bretherton and

Wyant 1997), has not been shown previously in a La-

grangian study. Mauger and Norris (2010) do show this

using a reasonable proxy for PBL decoupling but sug-

gested that future studies use the CALIOP data as we

have done. Burleyson and Yuter (2015) use SST as a

PBL depth proxy and show a faster reduction in cloud

cover during the early to late morning decline in cloud

cover in deep PBLs. Here we show the PBL depth im-

pact using a more direct measure of PBL depth, and we

show that the PBL effect acts independently of pre-

cipitation and LTS. The result that lower LTS leads to

cloud breakup agrees with Sandu et al. (2010) and

Mauger and Norris (2010).

We propose a few physical processes associated with

our results. Strong inversions may inhibit cloud-top en-

trainment of dry air, allowing cloud cover to persist.

Moisture and aerosol transport into the cloud layer may

be limited in deep, decoupled PBLs, while strong Cu

updrafts into decoupled Sc decks may enhance en-

trainment and disrupt the thermodynamically driven

circulation leading to cloud breakup. There are regional

preferences as to which cloud-controlling factor is more

strongly associated with cloud-cover evolution, which

warrant further attention.

The effect of precipitation on cloud evolution appears

complex. Further modeling studies focusing on pre-

cipitation intensity are needed. Figure 16 shows that rain

may lead to an amplification of the observed PBL depth

impact. We show increasingly heavy precipitation is

associated with cloud persistence in shallower PBLs and

with cloud reduction in deeper PBLs.

A regional comparison of trajectories with above- and

below-median precipitation showed little consistency

when PBL depth was accounted for: rain showed little

significant effect in the northeast Pacific and southeast

Atlantic. Rain is associated with cloud persistence in the

southeast Pacific but with cloud breakup in the east In-

dian Ocean. Observation numbers were not sufficient to

thoroughly examine the effects of heavy precipitation

regionally, though a cursory look produced evidence

supporting our conclusion that precipitation exacer-

bates the effects of PBL depth in all regions. Future
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work will focus on determining what environmental

factors modulate the effects of rain on cloud evolution,

most notably PBL depth, and why and how the re-

lationships vary regionally.

Precipitation is shown to affect LWP and Nd, leading

to a relative decline in both. The explanation may be as

simple as the physical removal of liquid water and

aerosol (Albrecht 1989; Wood et al. 2012) from the

cloud layer. The decline in Nd related to precipitation is

seen only when the PBL is shallow; Nd appears to be

affected by very little in deeper PBLs where it shows a

consistent relative decline. This may be because the

cloud layer in a deeper decoupled PBL is partially cut off

from the aerosol source at the sea surface. Future work

may focus on estimating entrainment for each trajectory

using estimates of PBL depth fromMODIS (e.g., Wood

and Bretherton 2004).

Results from this work support existing hypotheses

about stratocumulus evolution (e.g., decoupled PBLs

tend to break up, weaker inversions are associated with

Sc breakup, and that precipitation rate plays a more

complex, but important, role in Sc evolution) while in-

viting further research with a larger sample size.We hope

to further apply our approach to a larger set of cloud-

controlling variables to study the proposed mechanisms

for cloud breakup at varying time scales and to attempt to

quantify the radiative and climatological effects. The

Lagrangian technique developed here can also be used to

evaluate the accuracy of the representation of the time

evolution of clouds in large-scale models.
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APPENDIX A

The Linear Relationship between CCA and DCCA

The aim of this study is to quantify and compare

how cloud properties change along thousands of unique

trajectories and to see which independent cloud-

controlling variables are associated with cloud prop-

erty changes. In section 3, we explain why it is necessary

to use seasonal/diurnal anomalies and we briefly discuss

how the temporal change in cloud-cover anomaly

DCCA along a trajectory depends on the initial value of

the CCA. Here, we further explore the relationship

between DCCA and initial CCA given the bounded

nature of the CCA distribution.

A 2100% anomaly represents an observation that

shows no cloud cover even though it is climatologically

always overcast at that point. A 1100% anomaly

represents a perpetually cloud-free box that happens

to be completely overcast upon observation. A tra-

jectory showing an initial 2100% anomaly could (this

is not likely) completely fill in with cloud cover while

advecting to a climatologically clear region, thus

showing a1200% DCCA. Figure A1 shows the possible

bounds for DCCA given any initial CCA. The bounds

are shown in red. In black we show what the DCCA
would look like if every CCA returned to a 0% anomaly

(climatology), while the flat blue line shows what the

plot would look like if anomalies persisted with

no change.

Most stable stochastic physical systems tend to return

to their mean state, such that departures from mean

behavior (i.e., anomalies) tend to decay over time.

Given these practical bounds we expect to see a negative

slope when plotting mean 24-h DCCA as a function of

initial CCA, and that this slope must fall between the

blue and black lines in Fig. A1. We expect that slopes of

mean DCCA versus CCA for shorter (longer) evolution

times will lie nearer the blue (black) line. Indeed,

Fig. A2 shows that this is the case for trajectory evolu-

tion times of 12, 24, 36, and 48h. The black line in this

case represents an experiment where we randomize

trajectory start and end points, indicating behavior

FIG. A1. The possible bounds placed on DCCA as a function of

initial CCA. The red line shows the extreme possibilities, while the

blue line shows what the relationship would look like with no

change, and the black line shows what the relationship would look

like if anomalies returned to 0.
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without any persistence (i.e., where anomalies decay

instantaneously). The other lines show that meanDCCA
displays an inverse linear dependence upon initial CCA

out to 48h. The lesser slope of the green (12 h) line tells

us that anomalies aremore persistent at 12 h than at 48 h,

as expected for a stochastic process with a particular

time scale. At 48h, mean DCCAs are nearly equivalent

to those for randomized end points indicating near-

complete decay of the initial anomalies.

Figure A2 illustrates why we need to be cognizant of

the initial anomaly: on average, DCCAs along trajecto-

ries tend to act to return initial anomalies to the mean

state (an anomaly of zero). Any comparison of DCCA
for different values of a controlling variable must take

this into account; otherwise, the comparison is biased by

the almost inevitably uneven distribution of initial

CCAs between two groups.

The rate at which the CCAs decay is quantifiable us-

ing the slope of each line in Fig. A2 along with an as-

sumption of a red noise process to estimate the e-folding

(decay) time t of CC anomalies along our trajectories.

For a red noise process, the lagged autocorrelation r(T)

of CCA(t) with CCA(t 1 T) at lag time T is

r(T)5 e2T/t . (A1)

An autocorrelation can be expressed as a covariance

r(T)5Cov[CCA(t), CCA(t1T)]/Var[CCA(t)] . (A2)

Noting that the slope of a linear fit between two vari-

ables, x and y can be written as

b5Cov(x, y)/Var(x) . (A3)

Substituting x 5 CCA(t) and y 5 CCA(t 1 T) in (A3),

we note from a comparison of (A2) and (A3) that the

slope of the relationship between CCA(t) and CCA(t1
T) is equal to r(t).Thus, from (A1) the slope of the linear

relationship between CCA(t1T) for binned values of

CCA(t) can be used to estimate the e-folding time t for

any lag time T. In Fig. A2, we show the mean time

change in CCA [i.e., CCA(t1T)2CCA(t)] rather than

CCA(t1T) for different bins of CCA(t). Thus, the

slope of the relationship in Fig. A2 is equal to r(T) 2 1.

Figure A2 shows in the legend the estimated values of

t for different trajectory lag times from 12 to 48h. For

lag times from 24 to 48h, t estimates are all in the range

17–18 h, consistent with a red noise process being an

FIG. A2. Mean 24-h DCCA for bins of initial CCA for trajecto-

ries of duration 12, 24, 36, and 48 h. Two-sigma standard error

bounds surrounding each mean value are shown. Also shown is an

example where we randomly matched CCAs at each end point to

the CCAs at each starting point and calculated DCCA. The black

line rests exactly on a21:1 line. Here, t is the e-folding time for an

anomaly, defined in (A1).

FIG. A3. Mean 24-h (top) DLWPA and (bottom) DNdA for bins

of their initial anomalies for trajectories of duration 12, 24, 36, and

48 h. Two-sigma standard error bounds surrounding each mean

value are shown. Also shown is an example where we randomly

matched anomalies at each end point to the anomalies at each

starting point and calculatedDLWP andDNdA. The black line rests

exactly on a 21:1 line.
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effective descriptor of cloud-cover anomaly time changes.

The shorter t for T 5 12h lag suggests a departure from

red noise on subdaily time scales, but we do not explore

this further here. We also find that t estimates are sen-

sitive to the sampling radius, with larger-radius samples

showing significantly longer t. We plan to explore this

dependency in future analysis.

Analogous linear relationships between starting

values of LWP and Nd anomalies and their mean

changes are found (Fig. A3). Although LWP andNd are

not bounded in the same way that CCAs are, we nev-

ertheless find linear, negative relationships between

their starting anomalies and their mean observed

changes at lags from 12 to 48h. Correlation coefficients

between initial anomalies and 24-h changes for each

variable are 20.59 for CC anomalies, 20.54 for LWP

anomalies, and 20.58 for Nd anomalies. Given how

linear both 24-h plots appear (Fig. A3), we feel com-

fortable using our linear regression method for changes

in LWP and Nd anomalies.

APPENDIX B

Alternative Methods to the Linear Regression from
Section 3

In section 3 and appendix A we show that there is a

consistent linear relationship between the mean ob-

served time change in a variable (cloud cover, LWP, or

Nd) and its initial anomaly. Anomalies on average tend

to return to their mean state (anomaly 5 0) over time,

with larger initial anomalies undergoing typically larger

changes for a given e-folding (damping) time scale. Sets

of trajectories with different distributions of initial

anomalies can be compared only when this stochastic

behavior is taken into account. In section 3 we use a

linear regression to achieve this by representing the

mean behavior for an initial anomaly as a linear function

of that anomaly, then subtracting that mean behavior to

leave a residual that is no longer dependent upon the

initial anomaly. These residuals can then be compared

for groups of trajectories conditioned on one of the

cloud-controlling variables.

The assumption of linearity in the relationships be-

tween initial anomalies and their time change is not

strictly necessary, and other methods exist to account for

the stochastic nature of anomalies. One option (termed

here the ‘‘binning method’’) is by comparing the differ-

ence between mean changes in our variables within bins

of starting anomalies (Fig. B1), where we show the mean

DCCA values for bins of starting CCA values as well as

the bin boundaries for trajectories with above- and

below-median initial LTS anomalies. We show the aver-

age DCCA across all six bins on the bottom right of

Fig. B1. The difference between the two subsets is nearly

identical to that shown inFig. 9, showing that themethods

produce equivalent results for our LTS test example and

that the assumption of linearity is not required.

Another proposed method involves subsampling our

trajectories in order to create matching distributions of

FIG. B1. (top)One-sigma standard error bounds for average 24-h

DCCA for six bins of initial CCA. Trajectories are separated by

above- or below-mean LTS0 at 0 h. (bottom) The bin-mean and

standard error DCCA for each set of trajectories relative to the

mean of all trajectories within each bin. The mean value across all

bins for each set of trajectories is shown on the far right, indicating

significant separation between the sets.

FIG. B2. A frequency distribution over 20 bins showing the

number of times initial CCA values were observed for trajectories

with above- and below-mean LTS0. The dashed black line shows

the matched initial distributions used in our even sampling routine.
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initial anomalies [see, e.g., Gryspeerdt et al. (2014), their

Fig. 1]. We illustrate this method in Fig. B2, where we

show the frequency distributions of initial CCA for

trajectories with above- and below-median starting LTS

for 20 bins of initial CCA. The dashed line shows the

number of comparable observations between the two

sets of trajectories. Within each bin we use all available

trajectories from the underrepresented subset and ran-

domly sample trajectories from the overrepresented set,

forcing the distribution of initial CCAs to match within

every bin, thus creating ‘‘matched subsets’’ of trajecto-

ries. We can then directly compare the mean DCCA
between the two matched subsets. We call this method

the ‘‘even sampling method.’’

A direct comparison between all three methods shows

that they are very consistent for our LTS example. The

above-median LTS trajectories show mean DCCA
values of11.016 0.13 (linear regression),11.016 0.17

(binning), and 10.92 6 0.19 (even sampling), while the

below-median LTS trajectories show DCCA values

of 21.11 6 0.13 (regression), 21.07 6 0.18 (binning),

and 21.01 6 0.20 (even sampling).

In the main body of the paper, we choose the linear

regressionmethod because the binningmethod in Fig. B1

still retains some bias: even within the bins the mean

initial anomalies are slightly different for the high- and

low-LTS groups, leading to a small, but not negligible

bias. Although the binning method has the advantage

of not assuming linearity, Figs. 8, 10, A2, and A3 show

that assuming a linear relationship between initial

anomalies and their time changes is reasonable. The

even sampling method also produces very similar re-

sults, but with a significant loss of data. In our examples

above we find consistency between the methods but

eroded statistical significance (larger uncertainty

bounds) due to the reduced number of available tra-

jectories. In Figs. B3 and B4, we reproduce Fig. 11 using

the two alternative methods to show how the results

vary between methods.
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