
Environmental and Internal Controls on Lagrangian Transitions from Closed Cell Mesoscale
Cellular Convection over Subtropical Oceans

RYAN EASTMAN,a ISABEL L. MCCOY,b,c AND ROBERT WOOD
a

aDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington
bUniversity Corporation for Atmospheric Research, Boulder, Colorado

cRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

(Manuscript received 10 September 2020, in final form 29 April 2021)

ABSTRACT: Classifications of mesoscale cellular convection (MCC) for marine boundary layer clouds are produced

using a supervised neural network algorithm applied to MODIS daytime liquid water path data. The classifier, used in prior

studies, distinguishes closed, open, and cellular but disorganized MCC. This work uses trajectories in four eastern sub-

tropical ocean basins to comparemeteorological variables and the structures of boundary layers for trajectories that begin as

closed cells but evolve into either open cells or disorganized cells or remain closed cells over one afternoon–afternoon cycle.

Results show contrasts between the trajectory sets: Trajectories for MCC that remain closed cells are more frequently

observed nearer coasts, whereas trajectories that break into open and disorganized cells begin farther offshore. The fre-

quency at which closed cells transition to open cells is seasonally invariant. The fraction of trajectories that stay as closed

MCC varies throughout the year in opposition to those that break into disorganized cells, so that their annual cycles are 1808
out of phase. Trajectories remain as closed cell more frequently in austral spring and boreal summer when the trade

inversion is stronger. The closed–disorganized MCC breakup is associated with weaker subsidence, a weaker inversion, a

drier free troposphere, and enhanced nighttime boundary layer deepening, consistent with a warming–drying mechanism.

The closed–open transition occurs in meteorological conditions similar to closed–closed trajectories. However, prior to the

transition, the closed–open trajectories exhibit stronger surface winds and lower cloud droplet concentrations and rainmore

heavily overnight. Results suggest that multiple, independent mechanisms drive changes in cloud amount and morphology.
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1. Introduction and motivation

Low-altitude, optically thick marine clouds cool Earth’s

oceans by reflecting sunlight and emitting infrared radiation to

space (Hartmann et al. 1992; L’Ecuyer et al. 2019). Marine low

clouds cover nearly 200 million square kilometers of ocean on

average during the day (Hahn and Warren 2007), while over-

cast marine cloud scenes are estimated to reflect 30%–40%

(Bender et al. 2016) of incoming solar radiation. Taken to-

gether, the extent and albedo of marine clouds has an effect

equivalent to covering 60–80 million km2 of dark ocean with

reflectors that scatter 100% of incoming radiation back out of

the atmosphere. Variations in marine cloud brightness and

cover can therefore have significant consequences for climate.

Attempts to understand the mechanics of marine cloud

cover evolution have been made using a variety of approaches:

Comparing long-term climatologies (yearly, seasonal, and

monthly) of cloud cover and environmental predictor variables

shows correlations between variables (e.g., Norris 1998), al-

though no single variable predicts a majority of cloud vari-

ability on subseasonal time scales (Klein 1997). Further,

relationships between variables are difficult to disentangle and

causality cannot be attributed to predictors without a time di-

mension (Qu et al. 2015; Klein et al. 2017). In situ studies using

aircraft or ships can collect a large amount of data at a very high

resolution, but they lack the longevity needed to build up

statistical significance and typically lack the spatial extent

needed to follow cloud scenes as they respond to their envi-

ronment while advecting downstream. Studies using computer

models capable of resolving circulations on the subcloud level

can isolate predictors and assess causality, but they are com-

putationally expensive and exist at the mercy of parameterized

model physics (Guichard and Couvreux 2017). Here we use a

newer Lagrangian approach (introduced in Eastman and

Wood 2016): Following thousands of cloudy parcels as they

evolve in time and space while sampling cloud properties and

environmental drivers twice daily using sun-synchronous po-

lar-orbiting satellites and reanalysis grids. This approach pro-

vides sample sizes large enough to attain statistical significance

and control for confounding behaviors, while also assessing

precursors to cloud changes with the introduction of a time

dimension.

This work is concerned with the Lagrangian evolution of the

cellular organization of stratiform clouds over the subtropical

oceans (Agee 1987). In marine environments characterized

by a strong temperature and humidity inversion (as is often

observed in the eastern subtropical oceans), a cool and moist

boundary layer is typically observed under a warm and dry free

troposphere. Here stratocumulus (Sc) clouds tend to organize

into broad, overcast, optically thick closed mesoscale cellular

convective (MCC) clouds, whose cells are sustained by

overturning driven by radiative cooling at cloud top (Wood

2012). Occasionally closedMCC clouds break into openMCC

clouds, which are characterized by relatively narrow bands of

optically thick clouds flanked by optically thin ‘‘veil clouds’’
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(Wood et al. 2018) with broad clear regions between the cloudy

edges (Wood et al. 2008). As they advect equatorward and

westward in the trade winds, subtropical closed and open cells

eventually evolve into less tightly organized, more cumuli-

form structures (Muhlbauer et al. 2014) with sparsely dis-

tributed cloudy cells, sometimes surrounded by thin veil

clouds and fields of shallow cumulus. These tropical trade

wind cloud fields also frequently organize into distinct,

quantifiable structures (Stevens et al. 2020), although for the

purposes of this study they will be characterized as ‘‘cellular

but disorganized’’ (shortened to ‘‘disorganized’’ here), since

they lack the distinct repeating structures seen in closed and

open MCC Sc clouds.

The drivers of transitions from closed to open cells versus

closed to disorganized cells are the focus of this work. Prior

research suggests that open cell formation from existing

closed cells is triggered by precipitation processes (Wang and

Feingold 2009). Savic-Jovcic and Stevens (2008) use a large-

eddy simulation to show how cool and moist perturbations in

near-surface airmasses formed by evaporation of rain drops

(cold pools) can shape and propagate convective elements in

drizzling Sc. Terai and Wood (2013) state that cold pool

processes do exert thermodynamic and dynamic forces on the

planetary boundary layer (PBL), but they stop short of

showing that they are responsible for any changes in cellular

organization. Precipitation was tested as a possible driver of

subtropical Sc breakup in Eastman and Wood (2016) but was

found to be of little importance after controlling for the depth

of the boundary layer, which covaries positively with rain

rate. Instead, processes that warm and deepen the boundary

layer appeared more important for Sc breakup. However,

that work did not assess changes in cellular structure, and it is

possible that evolution from closed to open cells is associated

with different processes than the evolution from closed to

disorganized cells.

The Lagrangian evolution of overcast Sc clouds has recently

been shown to be sensitive to the cloud droplet number con-

centrationNd and effective radius of cloud drops, which vary in

opposition to one another (Abel et al. 2020; Christensen et al.

2020). Christensen et al. (2020) used a Lagrangian framework

with geostationary satellite data in the Southeast (SE) Atlantic

Ocean to show that overcast Sc cloud decks are longer lived in

stable marine conditions when Nd is higher. A Lagrangian

study farther offshore in the SE Atlantic done by Abel et al.

(2020) used aircraft and geostationary satellite data to show

that cloud drops were significantly larger (and therefore

fewer in number) in a pocket of open cells (POC) relative to

surrounding close cells. Their Lagrangian analysis compares

24-h back trajectories initialized within and outside the POC,

showing equivalent effective radii, cloud amount, and above-

cloud aerosol concentrations 24-h before breakup. Abel et al.

(2020) goes on to show that the open cells studied entrain less

free-tropospheric air downward into the boundary layer

relative to neighboring closed cells that sit beneath a uni-

formly polluted troposphere. These recent results show that

microphysical processes can affect cloud evolution, and

that cellular structure has a significant effect on entrainment

processes.

The cellular structure of marine clouds affects albedo in a

few ways: Closed cells are typically cloudier than open, which

are in turn cloudier than disorganized cells. Further compli-

cating the picture, closed cells have been shown to have a

higher albedo for an equivalent cloud amount versus open

(I. L. McCoy et al. 2017), and disorganized cells (I. L. McCoy

et al. 2017, personal communication) indicating that cloud

condensate and microphysical properties are also likely im-

portant for setting scene albedo in addition to cloud cover.

Watson-Parris et al. (2021) shows that the existence of pockets

of open cells within broader closed cell Sc does lead to an in-

crease in solar radiation received at the surface, though the

radiative effect is small when only considering pockets of open

cells. This necessitates further study of these organizational

structures to understand what meteorological conditions and

internal processes may be driving transitions in cellular or-

ganization. Climate models that use parameterizations based

on meteorological conditions and thermodynamic structure

to simulate cloud properties will be improved if they can

better simulate cloud cellular properties and the conditions

associated with them.

Cellular structures in clouds can now be detected and

defined using high-resolution satellite imagery and effi-

cient machine-learning techniques (Wood and Hartmann

2006; Stevens et al. 2020; Yuan et al. 2020; Denby 2020).

Identifications from the supervised neural network algorithm

developed in Wood and Hartmann (2006) are combined with

our aforementioned Lagrangian analysis to study the evolution

of cloud structures as they advect in the subtropical trade

winds, identifying key precursors of changes in cellular orga-

nization. The details of this methods are presented in section 2.

In section 3, we examine the meteorological conditions and

internal cloud processes associated with MCC evolution. In

section 4, we contrast our results with prior work, in which

MCC classifications were not identified, in an effort to more

accurately represent distinct cloud processes.

2. Methods and data sources

a. MCC classifier

The cellular organization of marine cloud cover is deter-

mined using a supervised neural network algorithm devel-

oped in Wood and Hartmann (2006). The three-layer back

propagation neural network is used to classify 256 3 256 km2

scenes of Moderate Resolution Imaging Spectroradiometer

(MODIS) daytime only liquid water path (LWP) (King et al.

2003) into one of three cloud types: ‘‘closed cells,’’ ‘‘open

cells,’’ and ‘‘cellular but disorganized.’’ In this study, these

titles are shortened to ‘‘closed,’’ ‘‘open,’’ and ‘‘disorganized,’’

respectively. A fourth classification category in the original

algorithm for ‘‘homogeneous/no organization’’ has been

collapsed into the closed cells type because of its limited oc-

currence, as in Muhlbauer et al. (2014) and I. L. McCoy

et al. (2017).

Two sources of information from each scene are used as

inputs to the neural network: (i) the LWP probability density

function, and (ii) the LWP power spectrum from a spatial fast
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Fourier transform. This ensures that the neural network is

trained to classify cloud morphologies by considering both the

quantity of liquid water in the scene and its spatial arrangement

(i.e., level of cloud clustering), emphasizing the distinctions in

cloud micro- and macrophysics between morphologies in ad-

dition to their cloud coverage. One thousand cloud scenes were

hand identified by cloud type and used to train the neural

network until an 85%–90% accuracy rate was reached when

tested (Wood andHartmann 2006). Scenes with overlyingmid-

to high-altitude clouds are removed from the dataset when the

difference between cloud-top temperature and sea surface

temperature exceeds 308C (I. L. McCoy et al. 2017). Centers of

classified scenes are spaced 128 km apart, producing overlap

between each classified box and increasing the number of

scenes that can be classified from each MODIS swath.

Previously, this neural network has been applied to single

years of MODIS Terra collection 4 (Wood and Hartmann

2006) and Aqua collection 5.1 (Muhlbauer et al. 2014; D. T.

McCoy et al. 2017). Here, this algorithm is newly applied to

MODIS Aqua collection 6.1 for multiple years 2007–10. An

example of the classifier is shown in Fig. 1, where classifier

output is overlaid on a MODIS Aqua daytime cloud scene.

Numbers represent MCC classifications, where 0 is open cells,

1 is closed cells, and 3 is disorganized.

Figure 1 shows a few MCC classifications that appear in-

correct. In particular, there are a number of cells misclassified

as ‘‘1’’ on the western edge of the swath that are clearly open or

disorganized scenes. To evaluate whether the classifier

produces results reliable enough for study, we have visually

inspected the MCC classifications on 20 images, 10 in the

Northeast (NE) Pacific Ocean and 10 in the Southeast (SE)

Pacific in June and October, respectively. This includes a

total of 3878 classifications in boxes spanning 108 latitude
and 258 longitude. A visual assessment counting classifica-

tions that could be considered ‘‘unambiguously wrong,’’

meaning another classification is clearly correct to an ob-

server (the first author, who had no part in developing the

algorithm), shows that open cells are misclassified ;16% of

the time, closed cells are misclassified ;12% of the time,

and disorganized but cellular scenes are misclassified ;7%

of the time that they are observed. While we would prefer

these numbers to be 0%, this lends legitimacy to the classifi-

cation analysis, since the vast majority of scenes classified as an

MCC type are actually that type, at least ;84% of the time.

This is consistent with the 85%–90% accuracy rate of the

neural network algorithm when it was originally developed

and tested.

To determine anMCC classification for scenes observed and

tracked in our Lagrangian system, a frequency distribution of

all MCC box centers within 200 km of each Lagrangian sam-

pling point is produced at each point. If anyMCC classification

occursmore than 50%of the time in the scene distribution, that

scene is considered to be the dominant MCC type. This anal-

ysis was repeated using two other approaches for classifying

scenes, producing qualitatively identical results: 1) assign the

single MCC classification nearest to the trajectory sample as

FIG. 1. Mesoscale cellular convection classifications overlaid on the corresponding MODIS

Aqua image of clouds in the SE Pacific on 28 Sep 2007. Classifiers are defined as 0—open cells,

1—closed cells, and 3—disorganized cells. Trajectories only originate from areas where the

majority of cells are labeled as ‘‘1.’’
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the MCC type for that sample and 2) assign the sample MCC

type to the majority MCC type in the frequency distribution,

not requiring 50% or greater representation.

b. Lagrangian framework

Trajectories used in this Lagrangian study are identical to

those used in Eastman et al. (2017) and Eastman and Wood

(2018). They are generated from isobaric ERA-Interim (Dee

et al. 2011) wind fields at 925 hPa using the routine introduced

in Bretherton et al. (2010). Trajectories are initiated along

the CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) curtain, spaced 200 km

apart in four subtropical ocean study regions, shown in Fig. 2

and defined below, for years 2007–10. To capture two diurnal

cycles while advecting westward in the trade winds, trajectories

are run for 54 h. This extra time is necessary given that the

westward advection of trajectories follows the arc of the sun

overhead, slightly lengthening the time between sunrises.

In total, ;170 000 54-h trajectories are used. Samples of cloud

and meteorological data are taken concurrent with each

Afternoon-Train (A-Train) flyover at times defined as T 5 0,

12, 24, 36, and 48 trajectory hours. Note, however, that the

timing in UTC hours between each sample time is, on average,

slightly longer than 12 h because of the westward advection.

Sample points include all data within a 100-km radius of each

observation point. A 100-km radius is chosen in order for each

sample to contain several 18 3 18 latitude/longitude L3 grid

boxes so as to generate robust averages. Different sample radii

were investigated in Eastman et al. (2016), which showed that

Lagrangian tendencies were consistent between 100-km radii

and larger radii up to 1200 km.

Here, we focus on 24-h (1330–1330 LT) Lagrangian transi-

tions in MCC classifications, specifically looking at trajectories

that begin as closed cell Sc. Our 54-h trajectories are split into

24-h segments. Each segment contains one day-to-day diurnal

cycle. This segmenting is done by splitting 54-h trajectories that

begin during the day into two segments: one that spans 0–24 h,

and another that spans 24–48 h. For trajectories initialized at

night, only the span from 12 to 36 h is used. This creates just

over 250 000 24-h trajectory segments.

FIG. 2. Examples of 24-h trajectories used in this study (1 in 20 are shown) in our four study regions: (a) NE

Pacific, (b) SE Pacific, (c) SE Atlantic, and (d) E Indian. All trajectories begin as closed. Blue trajectories remain

closed, red trajectories transition to open cells, and black trajectories transition to cellular but disorganized cells

after 24 h.
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Trajectory segments, also called ‘‘trajectories,’’ are com-

posited into three sets based on their 0-h and 24-h MCC classi-

fications: closed–closed, closed–open, and closed–disorganized.

Requiring our trajectories to all begin as closed cells allows

for a greater ‘‘apples to apples’’ comparison since retrieved

cloud variables at 0-h may otherwise be artificially affected by

different cellular structures. The afternoon–afternoon time

period is constrained by the MCC data, which are only col-

lected during the daytime overpass of the Aqua satellite at

1330 local time. Given this constraint, there is no bias in our

results due to compositing of nonmatching diurnal cycles.

Nighttime data are collected concurrent with the 0130 local-

time overpass of theAqua satellite. Plots of these trajectories,

colored based on transition type, are shown in Fig. 2, which

also highlights the geographic bounds of our study regions.

Study regions are chosen in four eastern subtropical ocean

basins with similar climatologies, chosen to capture Sc maxima

near the west coasts of major continents and also the declining

cloud cover gradients farther offshore as the Sc transition into

trade cumulus (Cu). These regions are identical to those in

Eastman and Wood (2016, their Fig. 1), and are named the

Northeast Pacific, Southeast Pacific, Southeast Atlantic, and

the East (E) Indian regions. These regions are also illustrated

here in the maps in Fig. 2. The E Indian region was chosen

instead of the also-relevant Northeast (NE) Atlantic after an

analysis of trajectories showed a greater amount of synoptic

influence in the NE Atlantic, characterized by a significant

fraction of trajectories abruptly changing direction from

westward to eastward. This synoptic behavior, which can in-

terfere with the cloud processes we hope to study here, was

less frequent in the E Indian Ocean.

c. Cloud and meteorological data

This work will combine several data sources from polar

orbiting satellites and model reanalysis fields. Satellite

data come from several platforms orbiting in NASA’s

A-Train constellation, including MODIS and the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E) both

orbiting aboard the Aqua satellite, the CALIPSO, and the

spaceborne cloud profiling radar aboardCloudSat. The A-Train

satellites orbit together with equator crossing times at 0130

and 1330 local times, allowing for near-simultaneous sam-

pling of atmospheric features by several different instru-

ments. Meteorological data come from the ERA5 reanalysis

(Copernicus Climate Change Service 2017). Reanalysis data

fields are interpolated to match the observation times of the

A-Train satellites. ERA5 meteorological variables used in

this study are Surface wind speed, subsidence at 700 hPa v700,

sea surface temperature (SST), lower-tropospheric stability

(LTS; u700–u1000), and humidity at 700 hPa q700. These vari-

ables are referred to as ‘‘environmental’’ or ‘‘meteorologi-

cal’’ variables and are tested as drivers of MCC evolution.

Lower-tropospheric stability is chosen as our measure of in-

version strength instead of estimated inversion strength (EIS)

due to the strong correlation between EIS and q700, which is

shown to be a strong cloud controlling variable in the

Lagrangian realm (Eastman andWood 2018). The use of LTS

in lieu of EIS should not negatively impact results, since this

study takes place exclusively within the subtropics (Wood

and Bretherton 2004).

Cloud cover data retrieved along trajectories for day and

night come from the mean cloud fraction values in theMODIS

cloud mask dataset (Hubanks et al. 2008; Oreopoulos 2005).

These are available twice daily on the uniform 18 3 18
latitude/longitude (L3) grid. The MODIS swath is over 2000km

wide, requiring sensor viewing angles over 608 from nadir at the

swath edge. Geometric issues arise when clouds are viewed

from this oblique angle, causing a high bias in cloud amount at

swath edge (Maddux et al. 2010). This Lagrangian project uses

MODIS retrievals taken along trajectories that originate on

the CloudSat/CALIPSO curtain at hour 0 for every 54-h tra-

jectory. This means that the sensor zenith at trajectory outset is

always around 198 but is usually wider at subsequent obser-

vation times. Because cloud amount is biased higher at wider

angles, a correction is necessary to avoid a spurious increasing

tendency in cloud amount driven by the changing view angle.

This zenith angle bias is accounted for by subtracting the mean

excess in cloud cover from each sample caused by that sample’s

view angle (Eastman and Wood 2016), which can be as high as

14% at swath edge. This is done for day and night using the

mean sensor zenith angle for each sampled 18 3 18 L3 grid box.

Day and night cloud LWP retrieved along trajectories

comes from the AMSR-E sensor (Wentz and Meissner 2004)

averaged to the 18 3 18 L3 grid. AMSR-E provides total

LWP, which includes clear and cloudy portions, so total LWP

is divided by MODIS cloud fraction to estimate the LWP for

cloudy portions only (CLWP). This AMSR-E product is

different from the MODIS LWP used to classify the MCC,

which is only available during daytime. We choose the

AMSR-E LWP as a tracked variable because of the avail-

ability of nighttime data. For LWP values below 0.18 kgm22,

the AMSR-E algorithm does not distinguish between cloud

water and rainwater, producing a high bias in cloud water

path due to the inclusion of rainwater. In the appendix, we

use rain rates produced using the AMSR-E 89-GHz bright-

ness temperatures (introduced below) to create an adjusted

LWP product with the estimated rainwater contribution re-

moved. This study was done using both the adjusted and un-

adjusted CLWP product, with little qualitative difference in

results.

Cloud droplet number concentration (Nd) estimates come

from three sources: Our primaryNd dataset uses a combination

of cloud droplet effective radius and liquid water path detected

by the MODIS collection 6 daytime-only optical properties

dataset (King et al. 2003) and the relationship developed by

Boers et al. (2006) and Bennartz (2007) and shown as Eq. (1) in

Possner et al. (2020). Two other Nd products are compared in

section 3c: One was developed by Grosvenor and Wood

(2018), which uses the collection 5 MODIS optical properties

data and a different set of relationships. A third, independent,

Nd data source is the Modern-Era Retrospective Analysis for

Research and Applications, version 2 (MERRA-2; Gelaro

et al. 2017), which provides estimates of aerosol concentrations

for a variety of different aerosol types and sizes. These con-

centrations can be combined with the regression coefficients

determined inD. T.McCoy et al. (2017) to estimateNd. Because

AUGUST 2021 EA STMAN ET AL . 2371

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 06/07/23 07:00 PM UTC



of the difficult-to-retrieve nature of Nd and the possibilities of

biases in the data associated with cloud edge retrievals, multiple

Nd products are compared here to substantiate results.

Day and night rain rate estimates come from the routine

introduced in Eastman et al. (2019), which uses the relationship

between brightness temperature Tb observed by AMSR-E at

89GHz and rain rate as measured by the rain-profile dataset

(Mitrescu et al. 2010; Lebsock and L’Ecuyer 2011) from the

CloudSat cloud profiling radar. Rain rate estimation relies on

the positive relationship between Tb and rain rate (Miller and

Yuter 2013), where warm Tb is associated with greater in-cloud

LWP and heavier rain rates. The product is able to produce

estimates of rain rate after controlling for three other variables

that also drive Tb variation: surface wind speed, column water

vapor, and sea surface temperature. Column water vapor is

measured by theAMSR-E (Wentz andMeissner 2004). For the

updated version of this precipitation dataset used here, SST

and wind speed now come from the ERA5 reanalysis. Rain

rates are resolved in 4 km 3 6 km grid boxes, which is of a

sufficient resolution to see most individual cellular elements in

Sc cloud decks.

The depth of the PBL, assumed to be the same as the height of

the trade inversion, is estimated using the difference between

SST and cloud-top temperature for a subset of clouds with tops

assumed to be at the base of the trade inversion. The depthof this

layer is determined using a parameterized lapse rate fromWood

and Bretherton (2004). The temperature of the clouds at inver-

sion top is estimated using the algorithm developed in Eastman

et al. (2016, 2017), which is tuned through a comparison between

MODIS cloud-top temperature histograms and CALIPSO ver-

tical feature mask data (Vaughan et al. 2004).

3. Results

a. Climatological behavior of transitions

A geographic comparison between our trajectory sets is

shown in Fig. 3, where trajectories are composited by transition

type within each region. Figure 3 also includes mean wind

vectors at 925 hPa, the annual mean LTS, and a shaded contour

showing the relative frequency of closed cell MCC in com-

parison with the other MCC types. The NE Pacific, SE Pacific,

and SEAtlantic show similar results: closed–closed trajectories

are seen farther upwind, in regions with a stronger inversion,

while the closed–open and closed–disorganized transitions

tend to occur farther offshore and are in comparable locations.

FIG. 3. Thick lines show the mean locations of composited 24-h trajectories for all three possible MCC transition

types within each study region. Annual mean wind directions and relative speeds at 925 hPa are shown by the

arrows. The colored line contours show the annual mean LTS. The shading shows the frequency of closed cellMCC

relative to all classifications, with whiter shading indicating more closed cells.
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In contrast, the closed–open trajectories in the E Indian region

tend to occur farther upwind and farther north while the

closed–disorganized and closed–closedmean trajectories begin

farther offshore.

The seasonality of closed cell transitions is explored in

Figs. 4 and 5. Figure 4 shows the number of trajectories that

begin as closed cells within a 100-day sampling window. A

significant seasonal cycle is apparent in every region, with

peaks in the early austral spring for the Southern Hemisphere

regions, and in the early boreal summer for the NE Pacific.

In Fig. 5 the fraction of closed cells that break into open cells

(red), break into disorganized cells (black), or stay closed

(blue) are compared between regions. Trajectories remain

closed more often when trajectories beginning as closed cell

are more frequent (from Fig. 4). The fraction of closed cells

that break into open cells is relatively stable throughout the

year. In contrast, the fraction of closed cells that transition to

disorganized is seasonally variable, corresponding with the

opposing seasonality in the fraction of closed cells that remain

closed. The lack of a seasonal cycle in the relative frequency

of closed–open transitions is peculiar, given the strong sea-

sonal cycles in most meteorological variables in these regions

(Eastman et al. 2017, their Fig. 7) and may suggest that the

closed–open transition has less sensitivity to seasonally

varying meteorological conditions. This contrasts with the

significant seasonal cycle in the relative frequency of the

closed–closed and closed–disorganized transitions, which

implies they may be driven by varying meteorological con-

ditions. For example, LTS tends to be higher when closed–

closed trajectories are most frequently observed in the NE

Pacific, SE Pacific, and SEAtlantic (again fromEastman et al.

2017, their Fig. 7).

b. Composite analysis of cloud and predictor variables

Figures 6 and 7 show regional breakdowns of composited

cloud and meteorological variables taken at 0, 12, and 24 h for

our three trajectory sets. Composites represent averages of all

trajectories exhibiting that transition type with the transition

type specified by color. The width (in the y direction) of the

plots represents the 2-sigma standard error, to allow compar-

ison of means. Separation between the bounds indicates a

greater than 95% confidence that the sample means are dif-

ferent. Cloud variables compared in Fig. 6 show that cloud

cover (Figs. 6a,f,k,p) evolves similarly in each region, but dif-

ferently for each set: closed–closed trajectories stay overcast,

closed–open trajectories experience some cloud reduction, and

closed–disorganized trajectories experience the most cloud

loss. The sets remain overcast at the 0130 LT sampling time,

indicating that the breakup into open and disorganized cells

occurs between 0130 and 1330 LT. This timing is consistent

with the conclusions from the analysis of a much more limited

set of closed-to-open cell MCC transition cases in Wood et al.

FIG. 4. The number of all available 24-h trajectories per 100-day sampling window (sampled every 10 days) that start as

closed cells for years 2007–10, showing a strong yearly cycle of closed cells. The y-axis ranges differ for each region.
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(2008, their Fig. 10), which showed transitions peaking from

0300 to 0600 local time. For our other cloud variables, the NE

Pacific, SE Pacific, and SE Atlantic show similar behavior. In

those three regions closed–closed trajectories begin and end

with the most Nd and the lightest rain rates, begin with less

CLWP and begin in shallower PBLs. Relative to the other

trajectory sets, closed–open trajectories have significantly

lower Nd, greater overnight rain rates, and higher 0-h CLWP.

Closed–disorganized trajectories begin in deeper PBLs, have

less overnight CLWP, lower rain rates, and middling Nd rela-

tive to the other two sets. The E Indian ocean appears to be an

outlier in Fig. 6, with less distinction between sets. The most

significant difference between sets in the E Indian is the

stronger rain rate seen throughout the evolution of the closed–

open trajectories, which is in agreement with the rain behavior

in the other regions.

Figure 7 shows composites of meteorological variables in the

same manner as Fig. 6. In all regions except the SE Pacific, q700
is lowest for the closed–disorganized set. Wind speed is sig-

nificantly higher for the closed–open set in all four regions. The

sea surface is coolest and LTS is highest for the closed–closed

sets in all four regions. Subsidence is lowest at 0 and 12 h for the

closed–disorganized sets in the SE Pacific, SE Atlantic, and

NE Pacific.

To further verify results, we remove the effects of mean

geographical, seasonal, and diurnal differences between the

trajectory sets by producing anomalies relative to the 100-day

running mean of each variable centered on each day for day

and night separately. Figures 8 and 9 show anomalies of our

cloud and meteorological variables composited for all regions,

respectively. Results using anomalies reinforce the results

from Figs. 6 and 7 with stark contrasts present between the

trajectory sets. Closed–open trajectories are associated with

significantly stronger winds, reducedNd, and heavier overnight

rain. Closed–disorganized transitions are associated with re-

duced subsidence and LTS, a drier free troposphere, and

warmer sea surface. This suggests that drivers of closed–open

cell transitions are distinct from closed–disorganized transi-

tions: closed–open transitions are associated with internal mi-

crophysical and precipitation processes along with stronger

winds, while closed–disorganized transitions are driven by the

surrounding meteorological conditions.

A comparison of Figs. 8 and 9 with the regional behaviors

seen in Figs. 6 and 7 shows that the evolution of MCC within

each region may be driven by somewhat different processes.

For instance, there is little evidence thatNd is lower before the

closed–open transition in the E Indian relative to the other

transitions, but in the other three regions Nd is much lower

FIG. 5. The fraction of 24-h trajectories that begin as closed cells per 100-day sampling window (sampled every 10

days) that shows a specific transition in MCC classification for each study region.
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prior to the closed–open transition. Instead, the E Indian

closed–open transition is associated with much higher rain

rates relative to the other transition types there, or the other

regions. Combining all regions in Figs. 8 and 9 allows us to see

these processes in aggregate, where differing dominant pro-

cesses in different regions are combined. Looking into a single

region, or excluding any regions, may cause a study to miss out

on relevant mechanics.

Typically, subtropical Sc PBLs deepen at night due to the

increased turbulence and entrainment driven by radiative

cooling at cloud top. However, Fig. 8d illustrates shallower

PBL depth anomalies at night for closed–closed and closed–

open trajectories when compared with closed–disorganized.

Further, Figs. 6d, 6i, 6n, and 6s show closed–closed and closed–

open sets have less change in PBL depth over 24 h than do

closed–disorganized sets. This difference in cycles is likely

due to differences in q700, subsidence, and inversion strength

seen between the trajectory sets in Fig. 9. Taken together,

these differences in meteorological conditions for the closed–

disorganized set drive: Increased cloud-top cooling through a

drier free troposphere, stronger entrainment across a weaker

inversion, and more PBL deepening given the weaker com-

pensating downward motion in the troposphere. All of these

processes suggest that the clouds are experiencing warming

and drying through entrainment of free-tropospheric air. The

closed–open transition exhibits an enhanced diurnal cycle in

FIG. 6. Composited 24-h evolution of cloud variables for trajectories that begin as closed cells but evolve into

open (red) cells or disorganized cells (black) or stay closed (blue), broken down by study region. Variables shown

are (a),(f),(k),(p) cloud cover, (b),(g),(l),(q) cloud droplet number concentration, (c),(g),(m),(r) rain rate,

(d),(h),(n),(s) planetary boundary layer depth, and (e),(i),(o),(t) cloud liquid water path. Plot width represents the

2s standard error. The y-axis range is identical for theNEPacific, SE Pacific, and SEAtlantic but different for the E

Indian region.
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precipitation and LWP. This suggests that overnight precip-

itation processes may drive the cloud evolution instead of the

drying through PBL deepening and entrainment seen in the

contrasting closed–disorganized cases. These results are sum-

marized in Table 1, which shows the cloud and meteorological

variables most strongly associated with the three MCC transi-

tions examined in our study.

c. Untangling rain and Nd

Interpreting the evolution of rain rate and Nd along

Lagrangian trajectories requires more care as the calculations

of these values are nuanced and entangled. This is in part be-

cause rain rate and Nd tend to strongly covary. Cloud drops

tend to be large and drop concentrations tend to be low when

rain is present. Additionally, the routines and source data used

to estimateNd from satellite observations may introduce biases

due to the application of a single routine to distinct cloud re-

gimes with distinct vertical variations of Nd (Fu et al. 2019).

Here, we attempt to untangle these issues by first comparing

three different Nd products in our compositing routine. Then,

we further divide trajectories into groups/sets in which either

precipitation or Nd is held somewhat constant while the other

variable is unconstrained, allowing for the effects of one to be

tested while the other is controlled.

The Nd analysis from Fig. 6b, 6g, 6l, and 6q is repeated for all

regions combined using three separate Nd datasets: our default

FIG. 7. Composited 24-h evolution of environmental variables for trajectories that begin as closed cells but evolve

into open (red) cells or disorganized cells (black) or stay closed (blue), broken down by region. Variables shown are

(a),(f),(k),(p) 700-hPa specific humidity, (b),(g),(l),(q) 10-m wind speed, (c),(g),(m),(r) lower-tropospheric stability

(u700–u1000), (d),(h),(n),(s) sea surface temperature, and (e),(i),(o),(t) 700-hPa subsidence. Plot width represents the

2s standard error. The y-axis range is identical for theNEPacific, SE Pacific, and SEAtlantic but different for the E

Indian region.
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Nd (Fig. 10a), the Nd from Grosvenor and Wood (2018) (here-

inafter ‘‘Grosvenor Nd’’; Fig. 10b), and, as an entirely indepen-

dent data source, the Nd derived from MERRA aerosol

reanalysis using the regression established byD. T.McCoy et al.

(2017) (Fig. 10c). The default Nd dataset relies on MODIS C6

data, while the Grosvenor Nd uses MODIS C5, creating some

degree of independence, though they are both derived from the

same sensor. The Grosvenor Nd is specifically suited to single

layer, mostly overcast Sc, making it best suited for the compar-

ison at 0 h when all trajectories are closed cell, but less suited for

the later observations where clouds have broken up.

The separation of groups in all three frames of Fig. 10 sup-

ports our result, showing that closed–open transitions are asso-

ciated with fewerNd at the outset and closed–closed trajectories

have higher Nd. The Grosvenor Nd shows a higher mean and

increasing tendency for the closed–disorganized set, which is at

odds with the other two products, although this tendency is only

based on two data points. This increase in GrosvenorNd is likely

due to the increasingly broken clouds over time in the closed–

disorganized transition. The Grosvenor Nd is calculated for

clouds that are primarily overcast, so the subset of observations

that we show that are disorganized and alsomostly overcast here

represents a very small, and somewhat peculiar slice of our data.

A closer look shows that there are 838 closed–disorganized

transitions sampled for the Grosvenor Nd, while the other two

products have over 4800. This makes the Grosvenor Nd less

robust for this set and is likely why the mean and tendency is in

disagreement with the other products. However, again, it is

unwise inferringmuch from slopes derived from two data points.

In Fig. 11 we attempt to untangle the covarying effects of

rain and Nd. Here, our trajectory sets are grouped into quan-

tiles based on 0-h precipitation probability or Nd. Composites

for the covarying variable from our three trajectory sets

(closed–closed, closed–open, closed–disorganized) are com-

pared to see whether their behavior is different when their

covarying variable is constrained. Results from Figs. 11a–d

show that reduced 0-h Nd is associated with the closed–open

transition regardless of whether rain is likely at 0 h. This was re-

peated for overnight (12 h) rain observations, and the results were

qualitatively identical, indicating that Nd may influence the

closed–open transition independently of rain. Figures 11e–h show

that rainfall appears significantly associated with the closed–

open transition for three of the four sets. The rainfall signal

was present, but not significant when Nd was very low (below

27 cm23, from the default C6 product). Figures 11e–h indicate,

as above, that rain may influence the closed–open transition

independently of Nd. These results suggest that either rain and

Nd may be associated with separate mechanisms driving the

closed–open transition, or they may be a symptom of another

mechanism that drives the transition while also modifying both

Nd and rain rate.

4. Discussion

Prior work has shown a positive connection between

heavier precipitation, depleted Nd, and the appearance of

open MCC clouds using observations (Rosenfeld et al. 2006;

Wood et al. 2008) and models (Wang and Feingold 2009;

Feingold et al. 2015; Savic-Jovcic and Stevens 2008). Here, we

substantiate these findings with a larger, more statistically ro-

bust dataset that comprises tens of thousands of observations.

We also analyze a time dimension showing that negative Nd

anomalies and positive precipitation anomalies precede the

transition from closed to open MCC clouds. In addition to the

established microphysical and precipitation connections, this

work shows that faster surface wind speeds are associated with

the closed–open transition.

In comparing the closed–open transition with transitions

from closed to disorganized MCC, we show that the former is

physically distinct from the latter. Transitions from closed–

open MCC occur in PBLs that are environmentally similar

to PBLs where MCC remain closed cell. However, different

internal microphysical and precipitation properties are

present in the closed–open transition, as suggested byWood and

Hartmann (2006). Thus, open cells can be considered a special

expression of the Sc boundary layer. In contrast, the closed–

disorganized MCC transition is driven by meteorological

FIG. 8. Composited 24-h evolution of anomalies of cloud vari-

ables for trajectories that begin as closed cells but evolve into open

(red) cells or disorganized cells (black) or stay closed (blue). Cloud

variables include (a) cloud cover, (b) cloud droplet number con-

centration, (c) rain rate, (d) planetary boundary layer depth, and

(e) in-cloud liquid water path. Anomalies are calculated by re-

moving the 100-day running mean centered on each day in each

18 3 18 grid box for day and night separately. Plot width represents

the 2s standard error.
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conditions surrounding the PBL, where processes act to warm

and dry the cloud deck.

Christensen et al. (2020) shows that high Nd prolongs Sc

lifetime. Using this Lagrangian analysis coupled with MCC

classifications, we show that Sc that remain as closed cell

prefer high-Nd environments. This result suggests that the

Christensen et al. (2020) result may be in part driven by fewer

closed–open transitions when Nd is high. This is also in

agreement with the results from Rosenfeld et al. (2006),

which show that closed cells remain in ship tracks through

fields of open cell MCC and conclude that cellular transitions

from closed to open are highly sensitive to cloud droplet

concentrations.

Results here are limited to the large-scale meteorological

variables and cloud deck conditions associated with MCC

transitions seen by our trajectories. We have identified three of

our tested variables as being associated with closed–open

transitions, either prior to the transition in the case of reducedNd

and stronger wind speed, or concurrent with the overnight

transition in the case of heavier rain. These results can aid in

predicting the likelihood of closed–open transitions or in estab-

lishing more realistic boundary conditions in models that study

the transition, but they do not directly reveal an exact mechanism

for the closed–open transition. The overnight PBLdeepening and

entrainment drying hypothesis for the closed–disorganized tran-

sitions appears to be well supported by the data. The closed–

disorganized transition usually occurs farther downstream, closer

to the equatorial edge, with a warmer sea surface and weaker

stability. A corresponding mechanism for the closed–open tran-

sition is less clear but is likely associated with the high overnight

rain rates and likely aided by increased wind speed and low Nd.

Future work may focus specifically on the closed–open

transition, which occurs in similar boundary layers with similar

meteorological conditions to the unchanged closed–closed

trajectories, but with stronger surface winds and different mi-

crophysics and rainfall characteristics. Some questions moti-

vated by our results are as follows: Is wind speed a driver of the

closed–open transition, does wind speed have a strong effect on

microphysics and/or precipitation, are synoptic differences

apparent between longer back trajectories, and what drives the

higher LWP and reducedNd that tends to precede closed–open

transitions? Prior observational work in pristine marine Cu

appears to show that stronger wind is associated with more

cloud drops (Colón-Robles et al. 2006), though that focuses on

different geographical regimes (and perhaps different cloud

processes) than we do here. Kazil et al. (2016) modeled non-

precipitating Sc for a variety of wind speeds and show a

stronger LWP diurnal cycle, and higher LWP on average when

wind is stronger. This is due to enhanced surface moisture

fluxes and increased production of turbulent kinetic energy

(TKE) in buoyant updrafts, which could be part of the mech-

anism driving the closed–open transition, though a study in-

cluding precipitation would be beneficial. A higher latent heat

flux associated with stronger winds would lead to greater

condensation and stronger buoyant production of TKE (as

explained in Bretherton andWyant 1997). Scott et al. (2020) go

on to show that stronger winds in subtropical Sc regions are

associated with enhanced cloud amount, but decreasing optical

thickness, which could hint at changes in cellular structure. The

positive connection between surface wind speed and open cells

was mentioned in Wood et al. (2008); however, a detailed

analysis is lacking. Bony et al. (2020) also see that patterns of

mesoscale cloud organization are well separated by wind speed

in the tropics. It is possible that other characteristics associ-

ated with stronger winds are mechanically responsible for the

transition: convergence/divergence, shear within the PBL or

across the inversion, or additional turbulence within the PBL.

Future work concerning the closed–open transition will in-

corporate longer trajectories to study the boundary layer for

several days prior to transition to see whether microphysical

anomalies are organized around perturbations in the flow, or

whether flow perturbations could be influenced by precipita-

tion or microphysical processes in the clouds. Higher temporal

sampling resolution of reanalysis variables is also a priority

moving forward.

The analysis in section 3c begins to untangle rain and Nd,

suggesting that heavy rain and reduced Nd are independently

FIG. 9. Composited 24-h evolution of anomalies of environmental

variables for trajectories that begin as closed cells but evolve into

open (red) cells or disorganized cells (black) or stay closed (blue).

Environmental variables include (a) 700-hPa specific humidity,

(b) 10-m wind speed, (c) lower-tropospheric stability (u700–u1000),

(d) sea surface temperature, and (e) 700-hPa subsidence. Anomalies

are calculated by removing the 100-day running mean centered on

each day in each 18 3 18 grid box for day and night separately. Plot

width represents the 2s standard error.

2378 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 06/07/23 07:00 PM UTC



associated with trajectories that transition from closed–open

MCC. A limitation of this analysis is that we only observe

precipitation at 12-h intervals, with only one overnight

observation at 0130 local time. Rainfall may be present

before or after this observation, making it possible that all

transitions are associated with rain, but not all of the rain is

observed. Studies using geostationary satellite data, large-

eddy-simulating models, or higher-resolution in situ stud-

ies (such as Abel et al. 2020) could aid in determining

whether separate mechanisms exist for the closed–open

transition, or whether a single mechanism explains the

differences in rain, Nd, and wind speed.

The geographic limitation of this study raises questions as to

whether the nature of the transitions seen in the subtropical

eastern ocean regions is common to other regions. Future work

should study transitions in MCC in a range of climatological

regions, which may better elucidate a set of mechanisms as-

sociated with transitions. Transitions in remote midlatitude

oceans may be free ofNd-altering pollution near the coasts and

may also occur where wind speeds aremore variable, offering a

wider sampling of wind conditions and perhaps better con-

straints on Nd. Further, midlatitude transitions are more likely

to be synoptically driven, so understanding these meteorolog-

ical mechanics will create a clearer, more robust understanding

of MCC types and transitions.

In Eastman and Wood (2016) it was shown that rainfall had

little effect on Lagrangian changes in Sc cloud amount.

Now that cellular structure can be assessed alongside cloud

amount, that result can be clarified: Rainfall does appear as-

sociated with the Lagrangian closed–open cell transition, but

less so for the closed–disorganized transition. The closed–

disorganized MCC transition is more than 2 times as common

as the closed–open transition and is associated with a greater

decline in cloud amount. Therefore, it is likely that the closed–

disorganized signal obscured the weaker, less frequent closed–

open signal in thatwork. Thenew results presentedhere show that

it is imperative that cloud cellular structure be assessed alongside

cloud amount if the goal is to properly capture cloud processes.

5. Conclusions

Mesoscale cellular convection (MCC) is classified into three

groups using a machine learning algorithm: Closed cell, open

cell, and cellular but disorganized. Classifications of MCC

type are sampled along 24-h trajectory segments, beginning

and ending at 1330 LT, and sampled every 12 h by A-Train

satellites and ERA-Interim reanalysis fields. Three trajectory

sets are analyzed, all of which begin as closed cells and either

stay closed, transition into open cells, or transition into

disorganized cells.

A geographical comparison of the mean locations of

transition types in our four subtropical ocean study regions

shows similar mean behaviors in the NE Pacific, SE Pacific,

and SE Atlantic regions. In those three regions closed–closed

trajectories tend to exist closer to the coasts where LTS is

climatologically greater, whereas closed–open and closed–

disorganized transitions occur farther offshore. The E Indian

region behaves in the opposite way, with closed–open oc-

curring closest to shore and closed–closed farthest offshore.

These geographic distributions may be in part due to the

geographic distributions in the training dataset, which could

influence the output of the algorithm.

A seasonal analysis shows that trajectories that begin as

closed cells are more common in the spring in our Southern

Hemisphere regions, and in summer in the NE Pacific. A

seasonal breakdown of the fraction of trajectories that stay

TABLE 1. The environmental and cloud variables most strongly

associated with our three 24-h MCC transitions.

Closed–closed Closed–open Closed–disorganized

Shallow PBL — Deep PBL

High Nd Low Nd —

Low rain rate Heavier overnight drizzle —

Cool SST — Warm SST

High LTS — Low LTS

— Strong wind speed —

— — Dry free troposphere

— — Weak subsidence

FIG. 10. The 24-h evolution of Nd composited for our three tra-

jectory sets (blue: closed–closed; red: closed–open; black: closed–

disorganized) for three different Nd products: (a) our default

product, (b) Grosvenor andWood (2018)Nd fromMODIS c5, and

(c) D. T. McCoy et al. (2017) MERRA aerosol regression Nd. Plot

width represents the 2s standard error. Droplet concentration

values must be present at both 0 and 24 h for a trajectory to con-

tribute to the composite.
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closed as opposed to breaking into open or disorganized

shows a strong trade-off between closed–closed and closed–

disorganized MCC, whereas the fraction of trajectories that

transition to open remains more constant throughout the

year. The trade-off between closed–closed and closed–

disorganized transitions hints at meteorological forcing

driving the closed–disorganized transition. Specifically, the

seasonal cycle of closed–closed/closed–disorganized MCC

appears synchronized with LTS, which is highest when

closed cells tend to remain closed.

A comparison of meteorological and cloud variables as

drivers of MCC change shows significantly different conditions

associated with closed–disorganized versus closed–open tran-

sitions (Table 1). Transitions to disorganized cells are associ-

ated with a stronger diurnal cycle of PBL depth, showing a

greater amount of overnight deepening. This is likely driven by

the accompanying weaker subsidence, weaker inversion, and

drier free troposphere, which allows for enhanced entrain-

ment of dry air into the cloud deck, causing drying and

breakup. This contrasts significantly with the closed–open

transition, which is associated with reduced Nd, stronger

surface winds, and enhanced overnight precipitation in PBLs

that begin as meteorologically comparable to the closed–

closed set. A cursory analysis suggests that lowNd and heavier

overnight rain may independently lead to the closed–open

transition. Follow-on analyses are stronglymotived to untangle

the effects of wind speed, Nd, and rain on the closed–open

transition, with the goal of discoveringmechanism(s) that drive

this transition.
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FIG. 11. A closer look at composited trajectories showing the 24-h changes of Nd and average precipitation probability for sets of

trajectories beginning as closed cells. Trajectories are divided into quantiles on the basis of 0-h values of (a)–(d) precipitation probability

and (e)–(h)Nd to show howone evolves while the other is constrained in quantile bins. The precipitation spike at 12 h is associatedwith the

diurnal cycle of stratocumulus drizzle, which peaks at night more strongly for trajectories that transition from closed to open. Plot width

represents the 2s standard error.
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at https://doi.org/10.5067/YL62FUZLAJUT. CloudSat rain-

profile (Lebsock and L’Ecuyer 2011) data are available at

http://www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-rain-
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https://eosweb.larc.nasa.gov/project/calipso/lidar_l2_vfm_table.

The observed PBL and rain rate estimate data are processed

using the above datasets and are also available from the author

upon request.

APPENDIX

Creation of an Adjusted LWP Product

By design, the AMSR-E passive microwave LWP product

fails to distinguish between cloud water and rainwater until

LWP exceeds 0.18 kgm22. At that threshold, a partitioning is

imposed, assuming that cloud liquid water is a function of rain

rate and the depth of the rain column. The inclusion of drizzle

and rain in the calculation of CLWP for values below

0.18 kmm22 introduces a high bias in CLWP relative to other

products, such as the daytime-only MODIS CLWP, which is

based on cloud-top optical properties and not passive mi-

crowave retrievals. This is shown in Greenwald et al. (2018,

their Fig. 3) where AMSR-E CLWP and MODIS CLWP

calculated from the 3.7-mm channel are plotted as a function

of AMSR-E total liquid water path (TLWP). In that plot, the

mean AMSR-E CLWP is higher than MODIS CLWP for

TLWP values above;0.03 kgm22. This high bias is likely due

to the inclusion of drizzle in the AMSR-E CLWP, so the

separation of the curves for TLWP values below 0.18 kgm22

may be in large part due to the unaccounted-for presence of

drizzle and rain drops.

Now with the availability of a semi-independent rain-rate

product, the CloudSat and AMSR-E 89-GHz rain rate esti-

mates used in this work, we can recreate this plot (Greenwald

et al. 2018, Fig. 3) for values of CLWP as a function of rain rate

for averages in 18 3 18 L3 grid boxes, shown in Fig. A1. We use

the coarse L3 grid boxes to mitigate the effects of rainfall

in neighboring AMSR-E pixels, which also have an effect

on AMSR-E CLWP. The gray area between the two curves

represents the high bias in AMSR-E CLWP relative to

MODIS. It is likely that this high bias is caused by the inclusion

of rain and drizzle drops in the AMSR-E product. This bias

begins to affect AMSR-E CLWP values for rain rates above

0.03mmh21.

The high bias in AMSR/E is approximated as a function of

rain rate and can be accounted for. The difference between the

two curves in Fig. A1 is shown in Fig. A2, where a polynomial is

fit to the data points for rain rates below 1mmh21. The re-

moval of the effects of rainwater is done by estimating the

CLWP bias in AMSR-E as a function of 89-GHz rain rate

(using the polynomial from Fig. 2) for all drizzling L3 grid

boxes, then subtracting this estimated bias from the AMSR-E

CLWP values, leaving an adjusted CLWP with the effects of

precipitation reduced. This adjusted value is used here. For

rain rates above 1mmh21, there are too few data points to

extend the curve, so those values are eliminated. This removes

less than 0.008% of our grid boxes.

FIG. A1. MODIS 3.7-mm (red) and AMSR-E (blue) CLWP as a

function ofCloudSat andAMSR-E 89-GHz rain rates. The gray area

represents the high bias in AMSR-E CLWP that is likely caused by

rainwater and is plotted in Fig. A2 as a function of rain rate.

FIG. A2. The difference between AMSR-E and MODIS CLWP

as a function of rain rate (black dots), with a seventh-degree

polynomial fit to the points (red line).
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