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Abstract 22 
 23 
 Classifications of mesoscale cellular convection (MCC) for warm clouds in the marine 24 
boundary layer are produced using a human-trained machine-learning algorithm applied to 25 
MODIS daytime liquid water path data. The classifier distinguishes closed, open, and 26 
disorganized cellular MCC. This work uses a set of trajectories in four eastern subtropical ocean 27 
basins to compare meteorological variables and the structures of cloudy boundary layers for 28 
trajectories that all begin as closed cells, but evolve either into open cells, disorganized cells, or 29 
remain closed cells over one afternoon-afternoon diurnal cycle. 30 
 Results show strong contrasts between the three trajectory sets: Trajectories for MCC 31 
that remain closed cell are more frequently observed upwind, nearer coasts, while trajectories 32 
that break into open and disorganized cells begin farther downwind. The frequency at which 33 
closed cells transition to open cells is seasonally invariant. The fraction of trajectories that stay 34 
closed MCC varies throughout the year in opposition to those that break into disorganized cells. 35 
Trajectories remain closed cell more frequently in spring and summer when the trade inversion 36 
is stronger. 37 
 The closed-disorganized MCC transition is associated with weaker subsidence, a weaker 38 
inversion, a drier overlying free troposphere, and enhanced nighttime boundary layer 39 
deepening, suggesting a warming-drying mechanism for cloud breakup. The closed-open 40 
transition occurs in meteorological conditions more similar to closed-closed trajectories. 41 
However, prior to the transition, the closed-open trajectories exhibit stronger surface winds, 42 
lower cloud droplet number concentrations, and rain more heavily overnight. Conclusions 43 
suggest that multiple, independent mechanisms drive changes in cloud amount and 44 
morphology. 45 
 46 
  47 



 3 

Introduction & Motivation 48 
 49 
 Low-altitude, optically thick marine clouds cool Earth’s oceans by reflecting sunlight and 50 
emitting infrared radiation to space (Hartmann et al. 1992, L’Ecuyer et al. 2019). Marine low 51 
clouds cover nearly 200 million square kilometers of ocean on average during the day (Hahn & 52 
Warren, 2007), while overcast marine cloud scenes are estimated to reflect 30-40% (Bender et 53 
al. 2016) of incoming solar radiation. Taken together, the extent and albedo of marine clouds 54 
has an effect equivalent to covering 60-80 million square kilometers of dark ocean with perfect 55 
reflectors. Modifications to marine cloud brightness and cover can therefor have significant 56 
consequences for climate.  57 
 Attempts to understand the mechanics of marine cloud cover evolution have been 58 
made using a variety of approaches: Comparing long-term climatologies (yearly, seasonal, 59 
monthly) of cloud cover and environmental predictor variables shows correlations between 60 
variables (for example: Norris, 1998), though no single variable predicts a majority of cloud 61 
variability (Klein, 1997), confounding relationships between variables are difficult to 62 
disentangle, and causality cannot be attributed to predictors without a time dimension (Qu et 63 
al. 2015; Klein, 2017). In-situ studies using aircraft or ships can collect a large amount of data at 64 
a very high resolution, but they lack the longevity needed to build up statistical significance and 65 
also typically lack the spatial extent needed to follow cloud scenes as they respond to their 66 
environment while advecting downstream. Studies using computer models capable of resolving 67 
circulations on the sub-cloud level can isolate predictors and assess causality, but are 68 
computationally expensive and exist at the mercy of parameterized model physics (Guichard & 69 
Couvreux, 2017). Here we use a newer Lagrangian approach (introduced in Eastman & Wood 70 
2016): Following thousands of cloudy parcels as they evolve in time and space while sampling 71 
cloud properties and environmental drivers on a sub-daily timescale using polar-orbiting 72 
satellites and reanalysis grids. This approach provides sample sizes large enough to attain 73 
statistical significance and control for confounding behaviors, while also assessing causality with 74 
the introduction of a time dimension. 75 
 This work is concerned with the Lagrangian evolution of the cellular organization of 76 
stratiform clouds over the subtropical oceans (Agee 1987). In marine environments 77 
characterized by a strong temperature and humidity inversion (as is often observed in the 78 
eastern subtropical oceans), a cool and moist boundary layer is typically observed under a 79 
warm and dry free-troposphere. Here Stratocumulus (Sc) clouds tend to organize into broad, 80 
overcast, optically thick closed cells, sustained by overturning driven by radiative cooling at 81 
cloud top (Wood 2012). Occasionally closed cells break into open cells which are characterized 82 
by relatively narrow bands of optically thick clouds flanked by optically thin ‘veil clouds’ (Wood 83 
et al. 2018)  with broad clear regions between the cloudy edges (Wood et al. 2008). As they 84 
advect equatorward and westward in the trade winds, subtropical closed and open cells 85 
eventually evolve into more disorganized structures (Muhlbauer et al., 2014) with widely-86 
spaced and somewhat randomly distributed cloudy cores surrounded by thin veil clouds and 87 
fields of shallow cumulus.  88 

The drivers of transitions from closed to open cells versus closed to disorganized cells 89 
are the focus of this work. Prior research suggests that open cell formation from existing closed 90 
cells is triggered by precipitation processes (Wang and Feingold, 2009). Savic-Jovcic & Stevens 91 
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(2008) use a Large Eddy Simulation to show how cool and moist perterbations in near-surface 92 
airmasses formed by evaporation of rain drops (cold pools) can shape and propagate 93 
convective elements in drizzling Sc. Terai & Wood (2013) state that cold pool processes do exert 94 
thermodynamic and dynamic forces on the PBL, but stop short of showing that they are 95 
responsible for any changes in cellular organization. Precipitation was tested as a possible 96 
driver of subtropical Sc breakup in Eastman and Wood (2016), but was found to be of little 97 
importance compared to the depth of the boundary layer, which covaries positively with rain 98 
rate. That work did not account for specific transitions in cellular organization, but it suggests 99 
that, in many cases, the breakup of Sc is not driven by precipitation. Instead, processes that 100 
warm and deepen the boundary layer are more important for Sc breakup. Now that we can 101 
specifically test drivers of changes in cellular organization, which may be significantly different 102 
from one another, we may find that the conflicting conclusions about the role of rain in Sc 103 
breakup are not as disparate as previously thought. 104 
 The cellular structure of marine clouds has an effect on albedo in a few ways: Closed 105 
cells are typically cloudier than open, which are in-turn cloudier than disorganized cells. Further 106 
complicating the picture, closed cells have been shown to have a higher albedo for an 107 
equivalent cloud amount versus open and disorganized cells (McCoy et al. 2017), indicating that 108 
cloud condensate and microphysical properties are also likely important for setting scene 109 
albedo, in addition to cloud cover. This necessitates further study of these organizational 110 
structures in order to understand what meteorological conditions and internal processes may 111 
be driving transitions in cellular organization. Climate models that use parameterizations based 112 
on meteorology to simulate cloud properties will be improved if they can better simulate cloud 113 
cellular properties and the conditions associated with them.  114 

Cellular structures in clouds can now be detected and defined using high-resolution 115 
satellite imagery and efficient machine-learning techniques (Wood & Hartmann 2006, Stevens 116 
et al. 2020, Yuan et al. 2020). These products can be combined with our aforementioned 117 
Lagrangian analysis to sample cellular structures repeatedly for the same cloud scenes as they 118 
advect in the subtropical trade winds. Using these techniques, we will study the meteorology 119 
and internal cloud processes driving MCC evolution in subtropical marine low clouds.  120 
 121 
Data Sources  122 
  123 
 This work will combine several data sources from polar orbiting satellites and model 124 
reanalysis fields. Satellite data come from several platforms orbiting in NASA’s Afternoon-Train 125 
(A-Train) constellation, including: The Moderate Resolution Imaging Spectroradiometer 126 
(MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) both orbiting 127 
aboard the Aqua satellite, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 128 
(CALIPSO), and the spaceborne cloud profiling radar aboard CloudSat. The A-Train satellites 129 
orbit together with equator crossing times at 1:30 and 13:30 local times, allowing for near-130 
simultaneous sampling of atmospheric features by several different instruments. 131 
Meteorological data come from two reanalysis datasets: Primarily the European Centre for 132 
Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al. 2011) along with 133 
the newer ERA5 reanalysis (Copernicus Climate Change Service, 2017), applied here in the 134 
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production of rain rate estimates. Reanalysis data fields are interpolated to match the 135 
observation times of the A-Train satellites in order to eliminate diurnal sampling biases. 136 
 Study regions are chosen in four eastern subtropical ocean basins with similar 137 
climatologies, chosen to capture Sc maxima near the west coasts of major continents and also 138 
the declining cloud-cover gradients further offshore as the Sc transition into trade Cumulus 139 
(Cu). These regions are identical to those in Eastman & Wood (2016, their Figure 1), and are 140 
named: the Northeast Pacific, Southeast Pacific, Southeast Atlantic, and the East Indian regions. 141 
 Trajectories used here are generated from isobaric ERA-Interim wind fields at 925 hPa 142 
using the routine introduced in Bretherton et al. (2010). Trajectories are initiated along the 143 
CloudSat/CALIPSO curtain, spaced 200 km apart in the four study regions. Trajectories are run 144 
forward for 54 hours. Samples of cloud and meteorological data are taken concurrent with each 145 
A-Train flyover at 0, 12, 24, 36, and 48 Trajectory hours, and include all data within a 100km 146 
radius of each observation point. 147 
 Cloud cover data retrieved along trajectories for day and night come from the mean 148 
cloud fraction values in the MODIS cloud mask dataset (Hubanks et al. 2008; Oreopoulos 2005). 149 
These are available twice daily on the L3 1°x1° latitude/longitude grid. The MODIS swath is over 150 
2000 km wide, requiring sensor viewing angles over 60° from nadir at the swath edge. 151 
Geometric issues arise when clouds are viewed from this oblique angle, causing a high bias in 152 
cloud amount at swath edge (Maddux et al. 2010). This Lagrangian project uses MODIS 153 
retrievals taken at a variety of viewing angles, so this zenith angle bias is accounted for by 154 
subtracting the mean excess in cloud cover from each sample caused by that sample’s view 155 
angle (Eastman & Wood, 2016). Day and night cloud liquid water path (LWP) comes from the 156 
AMSR/E sensor (Wentz & Meissner, 2004) averaged to the 1°x1° L3 grid. AMSR/E provides total 157 
LWP, which includes clear and cloudy portions, so total LWP is divided by MODIS cloud fraction 158 
to estimate the LWP for cloudy portions only (CLWP). 159 
 Cloud droplet number concentration (Nd) estimates come from three sources: Our 160 
primary Nd dataset uses a combination of cloud droplet effective radius and liquid water path 161 
detected by the MODIS collection 6 daytime-only optical properties dataset (King et al. 2003) 162 
and the relationship developed by Boers et al. (2006) and Bennartz (2007) and shown as 163 
Equation 1 in Possner et al. (2020). Two other Nd products are compared in Appendix 1: One 164 
was developed by Grosvenor & Wood (2018), which uses the collection 5 MODIS optical 165 
properties data and a different set of relationships. A third, independent, Nd data source is the 166 
Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2, Galero 167 
et al. (2017), which provides estimates of aerosol concentrations for a variety of different 168 
aerosol types and sizes. These concentrations can be combined with the regression coefficients 169 
determined in McCoy et al. (2017) to estimate Nd. Due to the difficult-to-retrieve nature of Nd 170 
and the possibilities of biases in the data associated with cloud edge retrievals, multiple Nd 171 
products are compared here in order to substantiate results. 172 
 Day and night rain rate estimates come from the routine introduced in Eastman et al. 173 
(2019), which uses the relationship between brightness temperature (Tb) observed by AMSR/E 174 
at 89 GHz and rain rate as measured by the rain-profile (Mitrescu et al. 2010; Lebsock and 175 
L’Ecuyer 2011) dataset from the CloudSat cloud profiling radar. Rain rate estimation relies on 176 
the positive relationship between Tb and rain rate (Miller and Yuter, 2013), where warm Tb is 177 
associated with greater in-cloud LWP and heavier rain rates. The product is able to produce 178 
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estimates of rain rate after controlling for three other variables that also drive Tb variation: 179 
surface wind speed, column water vapor, and sea surface temperature. Column water vapor is 180 
measured by the AMSR/E (Wentz and Meissner, 2004). For the updated version of this 181 
precipitation dataset, SST and wind speed now come from the ERA5 reanalysis. Rain rates are 182 
resolved in 4x6 km grid boxes, which is of a sufficient resolution to see most individual cellular 183 
elements in Sc cloud decks. 184 
 The depth of the planetary boundary layer (PBL), assumed to be the same as the height 185 
of the trade inversion, is estimated using the difference between cloud top temperature and 186 
SST for a subset of clouds assumed to sit at the trade inversion. The depth of this layer is 187 
determined using a parameterized lapse rate from Wood and Bretherton (2004). The 188 
temperature of the clouds at inversion top is estimated using the algorithm developed in 189 
Eastman et al. (2016 & 2018) which is tuned through a comparison between MODIS cloud top 190 
temperature histograms and CALIPSO vertical feature mask data (Vaughan et al. 2004). 191 
 The cellular organization of marine cloud cover is determined using a human-trained 192 
neural network developed in Wood and Hartmann (2006) and applied in McCoy et al. (2017) 193 
and Muhlbauer et al. (2014). This algorithm is applied to the MODIS collection 6 daytime-only 194 
LWP field from 2003-2011 to determine the type of low cloud dominating a 256x256 km scene. 195 
In this updated dataset, clouds are classified into three mesoscale cellular convection (MCC) 196 
types: closed cells, open cells, and disorganized cells. The original fourth classification category 197 
of homogeneous/no organization has been collapsed into closed cells due to its limited 198 
occurrence, as in McCoy et al. (2017). Centers of classified scenes are spaced 128 km apart, 199 
producing some overlap between each classified box, but increasing the amount of data within 200 
each box to improve the classification. An example of the classifier is shown in Figure 1, where 201 
classifier output is overlaid on a MODIS Aqua daytime cloud scene. Numbers represent MCC 202 
classifications, where 0 is open cells, 1 is closed cells, and 3 is disorganized. Scenes that may 203 
contain overlying cold clouds are filtered out of the analysis by comparing cloud top 204 
temperature to SST and removing scenes with a maximum difference greater than 30C. 205 

In order to determine an MCC classification for scenes tracked in our Lagrangian system, 206 
a frequency distribution of all MCC box centers within 200km of each sampling point is 207 
produced at each point. If any classification is greater than 50% represented in that distribution, 208 
the scene is considered to be that MCC type. Examples of this approach are shown graphically 209 
in Figure 2. This analysis was repeated using two other approaches for classifying scenes, 210 
producing qualitatively identical results: One approach assigned the single MCC classification 211 
nearest to the trajectory sample as the MCC type for that sample, while the other assigned the 212 
sample MCC type to the majority MCC type in the frequency distribution, not requiring 50% or 213 
greater representation. 214 
 This study also relies on several meteorological variables from reanalysis fields. Surface 215 
wind speed, subsidence at 700 hPa (w700), sea surface temperature (SST), lower tropospheric 216 
stability (LTS, q700-q1000), and humidity at 700 hPa (q700) come from the ERA-Interim dataset.  217 
 218 
Methods and Results 219 
 220 
a) Climatological behavior of transitions 221 
 222 
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 Here, we focus on 24-hour (13:30-13:30) Lagrangian transitions in MCC classifications, 223 
specifically looking at trajectories that begin as closed cell Sc. Trajectories are composited into 224 
three sets based on their 0-hour and 24-hour MCC classifications: Closed-closed, closed-open, 225 
and closed-disorganized. Requiring our trajectories to all begin as closed cells allows for a 226 
greater “apples-to-apples” comparison since retrieved cloud variables at 0-hours may 227 
otherwise be artificially affected by different cellular structures. The afternoon-afternoon time 228 
period is constrained by the MCC data, which are only collected during the daytime overpass of 229 
the Aqua satellite. Given this constraint, the compositing of non-matching diurnal cycles cannot 230 
produce biases in our results. Nighttime data are collected at the 12-hour observation time for 231 
all available data sources. Our 54-hour trajectories are divided into independent, 24-hour 232 
afternoon-afternoon subsets in order to maximize the number of 24-hour transitions available 233 
to study.  234 
 A geographic comparison between our trajectory sets is shown in Figure 3, where 235 
trajectories are composited by transition type within each region. The NE Pacific, SE Pacific, and 236 
SE Atlantic show similar results, with closed-closed trajectories seen further upwind, in regions 237 
with a stronger inversion, than the more comparably located closed-open and closed-238 
disorganized transitions, which tend to occur farther offshore. In the East Indian region the 239 
closed-open trajectories tend to occur farther upwind, with the closed-disorganized and closed-240 
closed changes occurring farther offshore, respectively.  241 
 The seasonality of closed cell transitions is explored in Figures 4 and 5. Figure 4 shows 242 
the fraction of trajectories that begin as closed cells within a 100-day sampling window. A 243 
significant seasonal cycle is apparent in every region, with peaks in the early spring for the 244 
southern hemisphere regions, but in the early summer for the NE Pacific. 245 

In Figure 5 the fraction of closed cells that break into open (red), break into disorganized 246 
(black), or stay closed (blue) are compared between regions. Trajectories remain closed more 247 
often when closed cell trajectory starts are more common (from Figure 4). The fraction of 248 
closed cells that break into open cells is relatively stable throughout the year. In contrast, the 249 
fraction of closed cells that transition to disorganized is seasonally variable, corresponding with 250 
the opposing seasonality in the fraction of closed cells that remain closed. The lack of a 251 
seasonal cycle in the relative frequency of closed-open transitions is peculiar, given the strong 252 
seasonal cycles in most meteorological variables in these regions (Eastman et al. 2017, Their 253 
figure 7) and may suggest that the closed-open transition has less sensitivity to seasonally 254 
varying meteorology. This contrasts with the relative frequency of the closed-disorganized 255 
transition, which exhibits a stronger seasonal cycle, so may likely be driven by varying 256 
meteorology. For example, LTS tends to be higher when closed-closed trajectories are most 257 
frequently observed in the NE Pacific, SE Pacific, and SE Atlantic (again from Eastman et al. 258 
2017, their figure 7). 259 

 260 
b) Composite analysis of cloud and predictor variables 261 
 262 
 Figures 6 and 7 show regional breakdowns of composited cloud and meteorological 263 
variables taken at 0, 12, and 24 hours for our three trajectory sets. Composites represent 264 
averages of all trajectories exhibiting that transition type with the transition type specified by 265 
color. The vertical extent of the plots represents the 2-sigma standard error, in order to 266 



 8 

compare means. Cloud variables compared in Figure 6 show that cloud cover (6a, 6f, 6k, 6p) 267 
evolves similarly in each region, but differently for each set: Closed-closed trajectories stay 268 
overcast, closed-open trajectories experience some cloud reduction, and closed-disorganized 269 
trajectories experience the most cloud loss. The sets remain overcast at the 1:30 sampling time, 270 
indicating that the breakup into open and disorganized cells occurs between 1:30 and 13:30. 271 
This timing is consistent with the conclusions from the analysis of a much more limited set of 272 
closed-to-open cell MCC transition cases in Wood et al. (2008, JGR, Fig. 10), which showed 273 
transitions peaking from 3-6 am local time. For our other cloud variables, the NE Pacific, SE 274 
Pacific, and SE Atlantic show similar behavior. In those three regions closed-closed trajectories 275 
begin and end with the most Nd and the lightest rain rates, and begin with less CLWP and in 276 
shallower PBLs. Closed-open trajectories have significantly fewer Nd, greater overnight rain 277 
rates, and more CLWP. Closed-disorganized trajectories begin in deeper PBLs, have less 278 
overnight CLWP, and lower rain rates, with Nd in-between the other two sets. The E Indian 279 
ocean appears to be an outlier in Figure 6, with less distinction between sets. The most 280 
significant difference between sets in the E Indian is the stronger rain rate seen throughout the 281 
evolution of the closed-open trajectories, agreeing with the rain behavior in the other regions. 282 
 Figure 7 shows composites of meteorological variables in the same manner as Figure 6. 283 
In all regions except the SE Pacific, q700 is lowest for the closed-disorganized set. Wind speed is 284 
significantly higher for the closed-open set in all four regions. The sea surface is coolest and LTS 285 
is highest for the closed-closed sets in all four regions. Subsidence is lowest at 0 and 12 hours 286 
for the closed-disorganized sets in the SE Pacific, SE Atlantic, and NE Pacific. 287 
 To further verify results, here we remove the effects of mean geographical and seasonal 288 
differences between the trajectory sets using anomalies. Figures 8 and 9 show anomalies 289 
combined for all regions for cloud and meteorological variables, respectively. Composites are 290 
constructed using deseasonalized anomalies of all variables, with the diurnal cycles also 291 
removed. This is necessary when combining numerous trajectories from the different regions, 292 
since the regions have differing climatologies and the mean locations of the different 293 
transitions are associated with different mean climatologies. Results using anomalies reinforce 294 
the results from Figures 6 and 7 with stark contrasts present between the trajectory sets. 295 
Closed-open trajectories are associated with significantly stronger winds, reduced Nd, and 296 
heavier overnight rain. Closed-disorganized transitions are associated with reduced subsidence 297 
and LTS, a drier free troposphere, and warmer sea surface. This suggests that drivers of closed-298 
open cell transitions are distinct from closed-disorganized transitions: Closed-open transitions 299 
are associated with internal microphysical and precipitation processes along with stronger 300 
winds, while closed-disorganized transitions are driven by surrounding meteorology. 301 
 Typically, subtropical Sc PBLs deepen at night due to the increased turbulence and 302 
entrainment driven by radiational cooling at cloud top. However, Figure 8d illustrates shallower 303 
PBL depth anomalies at night for closed-closed and closed-open trajectories, compared with 304 
closed-disorganized. Further, Figures 6d, 6i, 6n, and 6s show closed-closed and closed-open sets 305 
have less change in PBL depth over 24 hours compared to closed-disorganized sets. This 306 
difference in cycles is likely due to differences in q700, subsidence, and inversion strength seen 307 
between the trajectory sets in Figure 9. Taken together, these differences in meteorology for 308 
the closed-disorganized set drive: Increased cloud top cooling through a drier free troposphere, 309 
stronger entrainment across a weaker inversion, and more PBL deepening given the weaker 310 
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compensating downward motion in the troposphere. All of these processes suggest that the 311 
clouds are experiencing warming and drying through entrainment of free tropospheric air. In 312 
the closed-open transition, the diurnal cycle in precipitation and LWP are enhanced in contrast 313 
to the PBL deepening shown in the closed-disorganized cases, suggesting that overnight 314 
precipitation processes may drive the cloud evolution instead of drying through PBL deepening 315 
and entrainment. These results are summarized in Table 1, which shows which cloud and 316 
meteorological variables are most strongly associated with our MCC transitions. 317 
 318 
c) Untangling rain and Nd 319 
 320 
 Rain rate and Nd tend to strongly covary. When rain is present, cloud drops tend to be 321 
large and drop concentrations tend to be low. Additionally, the routines and source data used 322 
to estimate Nd from satellite observations may introduce biases due to the application of a 323 
single routine to several distinct cloud morphologies (Fu et al. 2019). Here, we attempt to 324 
untangle these issues by first comparing three different Nd products in our compositing routine. 325 
Then, we further subset trajectories into groups where either precipitation or Nd is held 326 
somewhat constant while the other variable is unconstrained, allowing for the effects of one to 327 
be tested while the other is controlled. 328 

In Figure 10, the Nd analysis from Figure 6, (frames b, g, l, q) is repeated for all regions 329 
combined using our default Nd (frame a), using the Nd from Grosvenor and Wood (2018, 330 
hereafter: Grosvenor Nd, frame b), and for an entirely independent data source, the Nd derived 331 
from MERRA aerosol reanalysis using the regression established by McCoy et al. (2017) (frame 332 
c). The separation of groups in all three frames of Figure 10 supports our result, showing that 333 
closed-open transitions are associated with fewer Nd at the outset and closed-closed 334 
trajectories have the highest Nd. The Grosvenor Nd shows an increasing tendency for the closed-335 
disorganized set, which is at odds with the other two products. This is likely due to the 336 
increasingly broken clouds over time in the closed-disorganized transition. The Grosvenor Nd is 337 
calculated for clouds that are primarily overcast, so the subset of observations we show that 338 
are disorganized and also mostly overcast here represents a very small, and somewhat peculiar 339 
slice of our data. A closer look shows that there are 838 closed-disorganized transitions 340 
sampled for the Grosvenor Nd, while the other two products have over 4800. This makes the 341 
Grosvenor Nd less robust for this set and is likely why the slope is in disagreement with the 342 
other products. 343 

In Figure 11 we attempt to untangle the covarying effects of rain and Nd. Here, our 344 
trajectory sets are separated by whether trajectories begin with below/above-median 345 
precipitation probability or below/above-median Nd. Composites for the covarying variable 346 
from our three trajectory sets (closed-closed, closed-open, closed-disorganized) are compared 347 
to see whether their behavior is different when their covarying variable is constrained. Results 348 
from 11a and 11b show that reduced 0-hour Nd is associated with the closed-open transition 349 
regardless of whether rain is likely occurring at 0 hours. This was repeated for overnight (12-350 
hour) rain observations and results were qualitatively identical, indicating that Nd may influence 351 
the closed-open transition independently of rain. Frames 11c and 11d show that rainfall 352 
appears significantly associated with the closed-open transition regardless of whether Nd is high 353 
or low, indicating, like above, that rain may influence the closed-open transition independently 354 
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of Nd. These results suggest that rain and Nd may be associated with separate mechanisms 355 
driving the closed-open transition, or they may be a symptom of another mechanism that 356 
drives the transition while also modifying both Nd and rain rate. 357 
 358 
Discussion 359 
 360 
 Results here are limited to the large-scale meteorological and cloud deck conditions 361 
associated with cloud transitions. We have identified three of our tested variables as being 362 
associated with closed-open transitions, either prior to the transition in the case of reduced Nd 363 
and stronger wind speed, or concurrent with the overnight transition in the case of heavier 364 
rain. These results can aid in predicting the likelihood of closed-open transitions or in 365 
establishing more realistic boundary conditions in models that study the transition, but they do 366 
not directly reveal an exact mechanism for the closed-open transition. The overnight PBL 367 
deepening and entrainment drying hypothesis for the closed-disorganized transitions appears 368 
well-supported by the data. A corresponding mechanism for the closed-open transition is less 369 
clear, but is likely associated with the high overnight LWP and rain rates, perhaps aided by 370 
increased wind speed and/or low Nd. 371 
 Future work may focus specifically on the closed-open transition, which appears to 372 
occur in similar boundary layers with similar meteorology to the unchanged closed-closed 373 
trajectories, but with stronger surface winds and different microphysics and rainfall 374 
characteristics. Some questions motivated by our results include: Whether wind speed is a 375 
driver of the closed-open transition, or whether wind has a strong effect on microphysics or 376 
precipitation, and what drives the higher LWP and reduced Nd that tends to precede closed-377 
open transitions? Prior observational work in pristine marine Cu appears to show that stronger 378 
wind is associated with more cloud drops (Colón-Robles et al. 2006). Kazil et al. (2016) modelled 379 
non-precipitating Sc for a variety of wind speeds and show a stronger LWP diurnal cycle, and 380 
higher LWP on average when wind is stronger. This is due to enhanced production of turbulent 381 
kinetic energy (TKE) in buoyant updrafts, which could be part of the mechanism driving the 382 
closed-open transition. A higher latent heat flux associated with stronger winds would lead to 383 
greater condensation and stronger buoyant production of TKE (as explained in Bretherton and 384 
Wyant 1997). Scott et al. (2020) go on to show that stronger winds in subtropical Sc regions are 385 
associated with enhanced cloud amount, but decreasing optical thickness, which could hint at 386 
changes in cellular structure. The positive connection between surface wind speed and open 387 
cells was mentioned in Wood et al. (2008), however a detailed analysis is lacking. It is possible 388 
that other characteristics associated with stronger winds are mechanically responsible for the 389 
transition: convergence/divergence, shear within the PBL or across the inversion, additional 390 
turbulence within the PBL, or enhanced surface fluxes. Future work concerning the closed-open 391 
transition could look back longer than 24-hours to see whether microphysical anomalies are 392 
organized around perturbations in the flow, or whether flow perturbations could be influenced 393 
by precipitation or microphysical processes in the clouds. 394 
 The analysis in section c of our results begins to untangle rain and Nd, suggesting that 395 
heavy rain and reduced Nd are independently associated with trajectories that transition from 396 
closed-open MCC. A limitation of this analysis is that we only observe precipitation at one 397 
moment overnight. Rainfall may be present before or after this observation, making it possible 398 
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that all transitions are associated with rain, but not all of the rain is observed. Modelling studies 399 
or higher-resolution in-situ studies could aid in determining whether separate mechanisms exist 400 
for the closed-open transition, or whether a single mechanism explains the differences in rain, 401 
Nd and wind speed. 402 
 The geographic limitation of this study raises questions as to whether the nature of the 403 
transitions seen in the subtropical Eastern ocean regions is common to other regions. Future 404 
work should study transitions in MCC in a range of climatological regions, which may better 405 
elucidate a set of mechanisms associated with transitions. Transitions in remote mid-latitude 406 
oceans may be free of Nd-altering pollution near the coasts and may also occur where wind 407 
speeds are more variable, offering a wider sampling of wind conditions and perhaps better 408 
constraints on Nd. 409 

In Eastman & Wood (2016) it was shown that rainfall had little effect on Lagrangian 410 
changes in Sc cloud amount. Now that cellular structure can be assessed alongside cloud 411 
amount, that result can be clarified: Rainfall does appear associated with the Lagrangian closed-412 
open cell transition, but less-so for the closed-disorganized transition. The closed-disorganized 413 
MCC transition is over twice as common as the closed-open transition, and is associated with a 414 
greater decline in cloud amount. Therefore, it is likely that the closed-disorganized signal 415 
obscured the weaker, less frequent closed-open signal in that work. The new results presented 416 
here show that it is imperative that cloud cellular structure be assessed alongside cloud amount 417 
if the goal is to properly capture cloud processes. 418 
 419 
Conclusions 420 
 421 
 Mesoscale cellular convection is classified into three groups using a machine learning 422 
algorithm: Closed cell, open cell, and disorganized but cellular. Classifications of MCC type are 423 
sampled along 24-hour trajectory segments, beginning and ending at 13:30, and sampled every 424 
12 hours by A-Train satellites and ERA-Interim reanalysis fields. Three trajectory sets are 425 
analyzed, all of which begin as closed cells and either stay closed, transition into open cells, or 426 
transition into disorganized cells.  427 

A geographical comparison of the mean locations of transition types in our four 428 
subtropical ocean study regions shows similar mean behaviors in the NE Pacific, SE Pacific, and 429 
SE Atlantic regions. In those three regions closed-closed trajectories tend to exist closer to the 430 
coasts where LTS is climatologically greater, while closed-open and closed-disorganized 431 
transitions occur farther offshore. The E Indian region behaves in the opposite way, with 432 
closed-open occurring closest to shore and closed-closed farthest offshore. A seasonal analysis 433 
shows that trajectories that begin as closed cells are more common in the spring in our 434 
southern-hemisphere regions, and in summer in the NE Pacific. A seasonal breakdown of the 435 
fraction of trajectories that stay closed as opposed to breaking into open or disorganized shows 436 
a strong trade-off between closed-closed and closed-disorganized MCC, while the fraction of 437 
trajectories that transition to open remains more constant throughout the year. The trade-off 438 
between closed-closed and closed-disorganized transitions hints at meteorological forcing 439 
driving the closed-disorganized transition. Specifically, the seasonal cycle of closed-440 
closed/closed-disorganized MCC appears synchronized with LTS, which is highest when closed 441 
cells tend to remain closed. 442 
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A comparison of meteorological and cloud variables as drivers of MCC change shows 443 
significantly different conditions associated with closed-disorganized versus closed-open 444 
transitions. Transitions to disorganized cells are associated with a stronger diurnal cycle of PBL 445 
depth, showing a greater amount of overnight deepening. This is likely driven by the 446 
accompanying weaker subsidence, weaker inversion, and drier free troposphere, which allows 447 
for enhanced entrainment of dry air into the cloud deck, causing drying and breakup. This 448 
contrasts significantly with the closed-open transition, which is associated with reduced Nd, 449 
stronger surface winds, and enhanced overnight precipitation in PBLs that begin as 450 
meteorologically comparable to the closed-closed set. A cursory analysis suggests that low Nd 451 
and heavier overnight rain may independently lead to the closed-open transition. Follow-on 452 
analyses are strongly motived to untangle the effects of wind speed, Nd, and rain on the closed-453 
open transition, with the goal of discovering mechanism(s) that drive this transition. 454 
 455 
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Tables 641 
 642 

Closed-Closed Closed-Open Closed-Disorganized 
    

High LTS Heavier drizzle at night Deep PBL 
Cool SST Low Nd Weak Subsidence 
High Nd Strong Wind Speed Low LTS 
Low Rain Rate   Warm SST 
Shallow PBL   Dry Free Troposphere 

  643 
 644 
Table 1. The dominant environmental and cloud variables associated with our three 24-hour 645 
MCC transitions.  646 
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Figure Captions 647 
 648 
Figure 1. Mesoscale Cellular Convection (MCC) classifications overlaid on the corresponding 649 
MODIS Aqua image of clouds in the SE Pacific. Classifiers are defined: 0 – open cells, 1 – closed 650 
cells, 3 – disorganized cells. 651 
 652 
Figure 2. Example frequency distributions of MCC classifiers within a 200km observation radius 653 
of each Lagrangian sampling point. Any classification with >50% representation in the 654 
distribution is considered the MCC type for that sample.  655 
 656 
Figure 3. The mean locations of composited 24-hour trajectories for all three possible MCC 657 
transition types within each study region. 658 
 659 
Figure 4. The fraction of all available trajectories per 100-day sampling window that start as 660 
closed cells, showing a strong yearly cycle of closed cells. 661 
 662 
Figure 5. The fraction of trajectories that begin as closed cells per 100-day sampling window 663 
that shows a specific transition in MCC classification for each study region. 664 
 665 
Figure 6. Composited 24-hour evolution of cloud variables for trajectories that begin as closed, 666 
but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). Broken down by 667 
study region. 668 
 669 
Figure 7. Composited 24-hour evolution of environmental variables for trajectories that begin 670 
as closed, but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). 671 
Broken down by region. 672 
 673 
Figure 8. Composited 24-hour evolution of anomalies of cloud variables for trajectories that 674 
begin as closed, but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). 675 
Anomalies are calculated by removing the 100-day running mean centered on each day in each 676 
1°x1° grid box for day and night separately. 677 
 678 
Figure 9. Composited 24-hour evolution of anomalies of environmental variables for 679 
trajectories that begin as closed, but evolve into open (red) cells, disorganized cells (black), or 680 
stay closed (blue). Anomalies are calculated by removing the 100-day running mean centered 681 
on each day in each 1°x1° grid box for day and night separately. 682 
 683 
Figure 10. The 24-hour evolution of Nd composited for our three trajectory sets (blue: closed-684 
closed, red: closed-open, black: closed-disorganized) for three different Nd products: (a) our 685 
default product, (b) Grosvenor 2018 Nd from MODIS c5, (c) McCoy et al. (2017) MERRA aerosol 686 
regression Nd. 687 
 688 
Figure 11. A closer look at composited trajectories showing the 24-hour changes of Nd for sets 689 
of trajectories beginning as closed for all trajectories with (a) below-median 0-hour 690 
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precipitation probability and (b) above median 0-hour precipitation probability. Precipitation 691 
probability is shown for sets of above- and below-median 0-hour Nd (c and d) to show that the 692 
overnight precipitation spike associated with closed-open occurs regardless of 0-hour Nd. 693 
  694 
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Figures 695 

 696 
Figure 1. Mesoscale Cellular Convection (MCC) classifications overlaid on the corresponding 697 
MODIS Aqua image of clouds in the SE Pacific. Classifiers are defined: 0 – open cells, 1 – closed 698 
cells, 3 – disorganized cells. 699 
  700 
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 701 
Figure 2. Example frequency distributions of MCC classifiers within a 200km observation radius 702 
of each Lagrangian sampling point. Any classification with >50% representation in the 703 
distribution is considered the MCC type for that sample.  704 
  705 
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 706 
 707 
Figure 3. The mean locations of composited 24-hour trajectories for all three possible MCC 708 
transition types within each study region. 709 
 710 
  711 
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 712 
 713 
Figure 4. The fraction of all available trajectories per 100-day sampling window that start as 714 
closed cells, showing a strong yearly cycle of closed cells. 715 
 716 
 717 
  718 
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 719 
 720 
Figure 5. The fraction of trajectories that begin as closed cells per 100-day sampling window 721 
that shows a specific transition in MCC classification for each study region. 722 
 723 
  724 
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 725 
 726 
Figure 6. Composited 24-hour evolution of cloud variables for trajectories that begin as closed, 727 
but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). Broken down by 728 
study region. 729 
 730 
  731 
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 732 
 733 
Figure 7. Composited 24-hour evolution of environmental variables for trajectories that begin 734 
as closed, but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). 735 
Broken down by region. 736 
 737 
  738 
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 739 
 740 
Figure 8. Composited 24-hour evolution of anomalies of cloud variables for trajectories that 741 
begin as closed, but evolve into open (red) cells, disorganized cells (black), or stay closed (blue). 742 
Anomalies are calculated by removing the 100-day running mean centered on each day in each 743 
1°x1° grid box for day and night separately. 744 
 745 
  746 
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 747 
 748 
Figure 9. Composited 24-hour evolution of anomalies of environmental variables for 749 
trajectories that begin as closed, but evolve into open (red) cells, disorganized cells (black), or 750 
stay closed (blue). Anomalies are calculated by removing the 100-day running mean centered 751 
on each day in each 1°x1° grid box for day and night separately. 752 
  753 
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 754 
 755 
Figure 10. The 24-hour evolution of Nd composited for our three trajectory sets (blue: closed-756 
closed, red: closed-open, black: closed-disorganized) for three different Nd products: (a) our 757 
default product, (b) Grosvenor 2018 Nd from MODIS c5, (c) McCoy et al. (2017) MERRA aerosol 758 
regression Nd. 759 
  760 
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 761 
 762 
Figure 11. A closer look at composited trajectories showing the 24-hour changes of Nd for sets 763 
of trajectories beginning as closed for all trajectories with (a) below-median 0-hour 764 
precipitation probability and (b) above median 0-hour precipitation probability. Precipitation 765 
probability is shown for sets of above- and below-median 0-hour Nd (c and d) to show that the 766 
overnight precipitation spike associated with closed-open occurs regardless of 0-hour Nd. 767 


