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Abstract 35 

 A Lagrangian framework is developed to show the daily-scale time evolution of low 36 

clouds over the Eastern Subtropical Oceans. An identical framework is applied to two General 37 

Circulation Models (GCMs): the CAM5 and UKMET and a set of satellite observations. This 38 

approach follows thousands of parcels as they advect downwind in the subtropical trade winds, 39 

comparing cloud evolution in time and space. This study tracks cloud cover, in-cloud liquid 40 

water path (CLWP), droplet concentration (Nd), boundary layer (PBL) depth, and rain rate as 41 

clouds transition from regions with predominately stratiform clouds to regions containing 42 

mostly trade cumulus. 43 

 The two models generate fewer clouds with greater Nd compared to observations. 44 

Models show stronger Lagrangian cloud cover decline and greater PBL deepening compared to 45 

observations. Comparing frequency distributions of cloud variables over time, models generate 46 

increasing frequencies of nearly-clear conditions at the expense of overcast conditions, while 47 

observations show transitions from overcast to cloud amounts between 50-90%. Lagrangian 48 

decorrelation timescales (e-folding time, t) of cloud cover and CLWP are between 11 and 19 49 

hours for models and observations, though a bit shorter for models. A Lagrangian framework 50 

applied here resolves and compares the time evolution of cloud systems as they adjust to 51 

environmental perturbations in models and observations. Increasing subsidence in the 52 

overlying troposphere leads to declining cloud cover, CLWP, PBL depth, and rain rates in models 53 

and observations. Modeled cloud responses to other meteorological variables are less 54 

consistent with observations, suggesting a need for continuing mechanical improvements in 55 

GCMs.  56 
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1. Introduction 57 

 Extensive, warm, low clouds over the eastern subtropical oceans cool the surface by 58 

reflecting sunlight while emitting infrared radiation (IR) at a temperature similar to the sea 59 

surface. Changes in the properties of these clouds generate large impacts on local and global 60 

temperatures (Klein and Hartmann, 1993; Ramanathan et al. 1989; Chen et al 2000). Much 61 

effort has gone into understanding the drivers of variability in these clouds to improve their 62 

representation in climate models. Currently, General Circulation Models (GCMs) do not 63 

consistently simulate realistic low marine clouds, motivating further research into cloud 64 

behavior in observations and models (Stephens, 2005). Here we apply a novel Lagrangian 65 

approach to two climate models and a set of satellite observations to construct a comparison of 66 

daily-scale cloud responses to environmental forcings. 67 

 Marine boundary layer clouds in the eastern subtropical oceans form in shallow decks of 68 

stratocumulus (Sc) near the west coasts of major continents (Wood 2012). Here, the planetary 69 

boundary layer (PBL) is a shallow layer of cool, humid air in contact with a cool sea surface, 70 

below a strong temperature and humidity inversion separating the PBL from the relatively 71 

warm, dry, and subsiding free troposphere. Air parcels at cloud top cool through upward IR 72 

emission, then descend to the sea surface, driving a reciprocating rising. Offshore winds carry 73 

these clouds into the tropics while many processes act simultaneously to modify them: Sea 74 

surface temperatures (SSTs) warm, imparting latent heat and turbulence, deepening the PBL 75 

enough that the radiatively-driven circulation no longer reaches the surface, decoupling the 76 

cloud from its moisture source (Wyant et al. 1997). Dry air above the PBL entrains into the 77 

cloud, evaporating cloud drops and warming the cloud (Mellado, 2017). Subsidence in the free 78 
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troposphere changes: A decrease in subsidence can drive PBL deepening and decoupling 79 

(Eastman et al. 2017), while an increase may compress the PBL, lowering the trade inversion to 80 

an altitude too shallow to maintain cloud cover within the PBL (Myers and Norris, 2013). 81 

Varying moisture and temperature above the PBL modifies the radiative balance at cloud top 82 

while altering the evaporative effects of entraining air (Eastman and Wood, 2018). Collision and 83 

coalescence of cloud drops can reduce the number concentration of cloud droplets (Nd), 84 

changing the cloud properties (Wood et al. 2018). Gravity waves propagating across the PBL 85 

erode boundary layer clouds (Yuter et al. 2018). These processes act together on Sc, which are 86 

eventually replaced by shallow cumulus (Cu) clouds as they advect into the tropics. This 87 

simplified and incomplete list illustrates the challenges facing the modelling communities 88 

attempting to create parameterizations in GCMs that simulate the cloud response to their 89 

environment. 90 

 In Bony and Dufresne (2005), the climatological radiative response of clouds in the 91 

tropics to an increase in SST was compared across 15 GCMs, showing inconsistent simulation of 92 

shallow marine clouds. Agreement between models and observations was poorest, and the 93 

spread between models was greatest, in tropical subsidence regions. This was substantiated by 94 

a comparison of 32 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by 95 

Shin et al. (2017), who show a large inter-model spread in low cloud amounts. Qu et al. (2013) 96 

show that the marine cloud response in models is more sensitive to SST than to inversion 97 

strength. However, they stress that studying additional environmental variables is necessary.  98 

 Nam et al. (2012), comparing within CMIP5, show that models generate too-sparse and 99 

too-optically thick clouds compared to observations. They introduce the term ‘too few, too 100 
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bright’, characterizing the discrepancy, reported more currently by Berry et al. (2019) for the 101 

CAM5 model. Karlsson et al. (2010) show that marine boundary layer depths are well 102 

represented by models in Sc regions, but downstream there is more model spread and less 103 

agreement with data, suggesting differences in parameterizations may be to blame for model 104 

spread. Ceppi et al (2017) motivate a strategy to improve cloud behavior in GCMs by 105 

introducing cloud resolving models into GCM grid boxes, creating so called superparameterized 106 

models, and indeed Parishani et al (2019) have used such a model to examine the cloud 107 

response to uniform SST increases, showing significant improvement in the simulation of the 108 

vertical PBL structure. Additionally, the DYnamics of the Atmospheric general circulation 109 

Modeled On Non-hydrostatic Domains (DYAMOND) project will use models which have a much-110 

improved 3km ‘storm-resolving’ resolution though they lack the horizontal resolution to resolve 111 

PBL eddies. With improvement in computing power, these new models may improve GCM 112 

quality, however coinciding observational comparisons will be necessary. This study introduces 113 

a new comparison framework for models and observations that will allow for better testing of 114 

these parameterizations, focusing on physical mechanisms driving cloud evolution and the 115 

cloud system responses to those drivers. 116 

 Current studies comparing models to observations often compare averages over several 117 

seasons or years, while not addressing day-to-day mechanics. deSzoeke et al. (2016) shows that 118 

variability in satellite-observed cloud cover is greatest on multi-day, but sub-seasonal time 119 

scales, and that the sensitivity of cloud cover to several environmental predictors varies 120 

according to the timescales studied. Compositing techniques, such as those centered on fronts 121 

and cyclones presented in Naud et al. (2019) show a great deal of promise in diagnosing model 122 
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processes, but they lack a time dimension, which can be used to compare model response 123 

times to environmental changes. Eastman et al (2016) shows that e-folding times of cloud cover 124 

and cloud liquid water along trajectories are only ~15-18 hours, suggesting cloud response to 125 

environmental forcing is strongest on daily time scales. This motivates a new approach to the 126 

study of cloud behavior that prioritizes day-to-day mechanics, which can act as a complement 127 

to existing techniques and allow for a more complete systematic comparison. 128 

 Here we present a framework that can be applied to models and observations in order 129 

to assess and compare the responses of cloud variables to environmental forcings on daily 130 

timescales. This Lagrangian approach, sampling the same parcels as they evolve in time and 131 

space, provides a time dimension, allowing for a more definitive look at cause-and-effect 132 

relationships between clouds, their environmental controls, precipitation effects, and aerosol 133 

indirect effects which manifest on timescales of hours-to-days. This framework also allows us to 134 

compare the cloud response to an unprecedented number of predictors. This study focuses on 135 

two GCMs, but future studies can incorporate many more models and predictors.  136 

 137 

2. Data 138 

 139 

a) Models and observation sources 140 

 Two GCMs are compared here: 1) the Community Atmosphere Model (CAM5), and 2) The 141 

UK Met office model (abbreviated: UKMET, formally: Hadley Centre Global Environmental 142 

Model (HadGEM)). For its physical parameterizations, the Fifth version of the Community 143 

Atmosphere Model (CAM5 – Neale et al., 2010) uses the Morrison-Gettelman microphysics 144 
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scheme of Morrison and Gettelman (2008), the UW shallow cumulus scheme of Park and 145 

Bretherton (2009), the turbulence scheme of Bretherton and Park (2009), the deep convection 146 

scheme of Zhang and McFarlane (1995), and the RRTMG scheme for radiation (Mlawler et al., 147 

1997; Iacono et al., 2008). A horizontal resolution of ~0.9x1.25° is used with 30 vertical levels. 148 

The model is initialized on Jan. 1, 2008 based on ERA-I reanalysis and is left free-running for two 149 

years, where the second year of hourly output (2009) is used for this analysis. Monthly SSTs are 150 

prescribed by HadISST (Rayner et al. 2003). 151 

 The UKMET model is the Hadley Centre Global Environmental Model (HadGEM), based 152 

upon the Unified Model. The configuration is a hybrid of that used for nested regional 153 

simulations (mostly used for numerical weather prediction) and the HadGEM-UKCA 154 

configuration used for climate modelling. The main atmospheric components are based on the 155 

GA6.1 configuration (Walters et al. 2017) at version 10.3 of the Unified Model, including the 156 

UKCA chemistry and aerosols package (Morgenstern 2009, O’Connor 2014).  157 

 Shallow, mid, and deep convection are parameterized separately in the UKMET from 158 

large-scale cloud (Walters et al. 2017) and do not take into account aerosol or droplet number. 159 

The large scale cloud microphysics scheme is based on Wilson and Ballard (1999), but with 160 

improvements to the warm rain parameterizations (Boutle et al., 2014). The UKCA-Activate 161 

scheme is used to produce cloud droplets from aerosol using the West (2014) scheme; this 162 

utilizes the parameterization of Abdul-Razzak and Ghan (2000). The bulk properties (cloud 163 

fraction, cloud liquid water content, vertical overlap, etc.) of large-scale cloud are 164 

parameterized using the prognostic cloud fraction and prognostic condensate (PC2) scheme 165 

(Wilson 2008a, Wilson 2008b) with modifications described in Morcrette (2012). The PBL is 166 
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parameterized using the turbulence closure scheme of Lock et al. (2000) with modifications 167 

described in Lock (2001) and Brown (2008). For radiation, the scheme of Edwards and Slingo 168 

(1996) is used with a configuration based on Cusack et al. (1998), but with a number of 169 

significant updates as summarized in Walters et al. (2017). A horizontal resolution of 170 

~1.875´1.25° (208´139 km at the equator) is used. Seventy vertical levels are used between 171 

the surface and ~70km altitude. 172 

 The UKMET model is nudged every 6 hours to ERA-Interim horizontal wind fields between 173 

~2277m and ~47,251m to ensure that the real meteorology is approximately reproduced while 174 

allowing fast-acting local boundary layer responses. Following the recommendations of Zhang 175 

(2014), we do not nudge the temperature field in order to further allow the model to respond 176 

more freely to induced local temperature changes. Instantaneous (non-time averaged) data is 177 

output every 7 hours for the UKMET model. Monthly SSTs are prescribed by HadISST, as for the 178 

CAM5. 179 

 Observational data come from three Afternoon Constellation (A-Train) satellites and the 180 

ERA-Interim reanalysis (ERA-I, Dee et al. 2011). The A-Train is a series of sun-synchronous, polar 181 

orbiting satellites flying in close formation, sampling the same scenes with a variety of sensors. 182 

The A-train crosses the equator at ~1:30 and ~13:30 local time. Model sampling times and 183 

locations along trajectories are determined by finding the time and place where the trajectories 184 

would have been sampled by the sensors aboard Aqua. Output fields are then interpolated for 185 

these times and locations. 186 

 187 

b) Lagrangian framework 188 
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We compare the behavior of cloud variables as they evolve over 48-hours in the 189 

boundary layer along Lagrangian trajectories, driven by the isobaric winds at 925 hPa produced 190 

the models and the ERA-Interim reanalysis. Reanalysis winds are used for the observational 191 

portion of this work. Model trajectories are generated using the same routine as for the 192 

reanalysis winds, substituting model wind fields for reanalysis fields. Study regions include four 193 

subtropical ocean basins, first described in Eastman and Wood (2016): The Northeast Pacific, 194 

Southeast Pacific, Southeast Atlantic, and the East Indian oceans. The regions are chosen to 195 

capture the maximum in Sc near the coasts and the downwind transition into trade Cu, as 196 

shown by the climatological averages in Hahn & Warren (2007).  197 

 We use a subset of the trajectories introduced in Eastman and Wood (2018), where 198 

~160,000 48-hour forward-running trajectories were computed for 2007-2010. Here, only the 199 

years 2009 and part of 2010 are compared. Each trajectory originates from an identical point in 200 

the models and observations, chosen at 200-km intervals along the CloudSat/CALIPSO track in 201 

order to assess 0-hour precipitation and PBL properties. For the Community Atmosphere Model 202 

(CAM5), trajectories are run for the year 2009. For the UK Met Office model, trajectories are 203 

run from March 2009-March 2010. Observational trajectories are chosen to overlap with both 204 

sets of model trajectories, from January 2009 - March 2010. These time periods do not overlap 205 

perfectly, so a test was performed comparing trajectories shared by all three platforms, which 206 

showed no qualitative disagreement with the results from the larger sets. Comparisons 207 

performed here are based on averages generated by compositing hundreds or thousands of 208 

trajectories per platform, not comparing individual trajectories from the same origination point. 209 

Cloud and predictor variable samples taken along trajectories include all grid-boxes with 210 
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centers within a 100-km radius from each sampling point for both models and observations. We 211 

choose this uniform, coarse sampling to even out differences in grid box sizes in source data. 212 

 Composited mean trajectories from each model and the reanalysis are compared in 213 

Figure 1. This compositing is done by subtracting the starting latitude and longitude from each 214 

sample point along each trajectory, then calculating the mean location of all sample points at 215 

each sample time within each region, then adding the mean start point from each region to the 216 

mean trajectory. All three show comparable mean behavior, with trajectories curving from 217 

equatorward to westward. Model trajectories are, on average, slightly longer than the 218 

reanalysis trajectories. The geographical distributions of all trajectories from both models and 219 

the reanalysis (not shown) show a consistent pattern between all three. 220 

 To compare the evolution of trajectories without biases introduced by geographic, 221 

seasonal, or diurnal differences, anomalies are generated for all data at all observation times 222 

and locations. Anomalies are calculated by subtracting the 100-day running mean at each 223 

location sampled, centered on each day, for day and night separately. 224 

 Data are broken into two categories: Cloud variables, which describe the nature and 225 

amount of cloud cover and depth of the PBL, and predictor variables, which may alter the 226 

clouds through a variety of mechanisms.  227 

   228 

c) Cloud Variables 229 

 Cloud variables are not just a measure of cloud cover, but also water content, droplet 230 

concentration, PBL depth, and rain rate. Several of these variables can be measured using a 231 

variety of instruments, or can be extracted from models using multiple techniques. Mean 232 



 11 

values of these variables are to some extent driven by these procedural differences instead of 233 

actual differences between the observations and models. This is an unavoidable drawback of 234 

such a study until a truly uniform set of methods is developed, which will be necessary for 235 

better comparisons in the future. Although mean values of cloud variables differ, these issues 236 

are reduced when assessing Lagrangian change, since the change over time will have the 237 

absolute value of a variable removed. For quick reference, observed cloud variables and their 238 

sources are briefly described in Table 1, and described in detail below. 239 

 240 

i) cloud cover 241 

 Cloud cover observations come from the Moderate Resolution Imaging 242 

Spectroradiometer (MODIS) level-3 cloud mask product for total cloud cover during day and 243 

night (Hubanks et al. 2008; Oreopoulos 2005) from the Aqua satellite. Data are available on a 244 

1°x1° grid. The wide view angle of MODIS causes a zenith angle bias where more cloud cover is 245 

reported at wider angles (Maddux et al. 2010). This may cause an observation bias, so a zenith 246 

angle correction is applied as described in Eastman and Wood (2016). 247 

 Cloud cover data from each GCM is based on the total cloud cover generated by the 248 

models within each grid box. A satellite simulator, the Cloud Feedback Model Intercomparison 249 

Project (CFMIP) Observation Simulator Package (COSP, Kay & NCAR, 2019) was tested for the 250 

UKMET total cloud cover. Cloud amount produced by the COSP was correlated with raw cloud 251 

amount, producing a correlation coefficient of r=0.9, meaning variability between the two is 252 

nearly equivalent. 253 

 254 
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ii) Cloud Liquid Water Path 255 

 Observations of cloud liquid water path (CLWP) come from the Advanced Microwave 256 

Scanning Radiometer for Earth Observing System (AMSR/E, Wentz & Meisner 2004), carried 257 

aboard the Aqua satellite. The AMSR/E LWP values represent the total liquid water path (TLWP) 258 

for 0.25x0.25° latitude-longitude grid boxes for both clear and cloudy portions. To provide a 259 

measurement of in-cloud-only LWP (CLWP), TLWP values are averaged into 1°x1° boxes, then 260 

divided by the MODIS cloud fraction in that box. 261 

 Liquid water path from AMSR/E may be biased by incorrect partitioning between rain 262 

and cloud water (Seethala & Horvath, 2010, Lebsock & Su, 2014). Our AMSR/E CLWP values 263 

were compared to those produced by MODIS for daytime-only observations (Platnick et al., 264 

2016), producing a correlation coefficient of r = 0.64 for co-located data points. We use the 265 

AMSR/E here because data are available during both day and night. Data from the MODIS CLWP 266 

product are used to show the variability between CLWP retrievals from different sensors, but 267 

this data is not used in any other analyses. 268 

 Liquid water path is output from both GCMs as TLWP, then scaled by model cloud 269 

fraction into CLWP. The CAM5 offers a single value of LWP, which may occasionally contain 270 

convective clouds. A cloud top height filter was applied, excluding clouds above a range of 271 

threshold values, and results were not sensitive to the exclusion/inclusion of occasional 272 

convective elements. The UKMET LWP variable is assigned to the cloud-only LWP, excluding 273 

rain water and deep convection. 274 

 275 

iii) droplet concentration 276 
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 Cloud droplet number concentration (Nd) is estimated using equation 1 from Eastman 277 

and Wood (2016), which is corrected and shown here also as equation 1: 278 

 279 

                                                        𝑁!"" = √2 #
$%&!

Γ!""
'/) *+,"/$

-%(/)&
    Equation 1 280 

 281 

As in Eastman and Wood 2016: “𝜌𝜔 is the density of liquid water; 𝛤eff	=	𝛤ad	𝑓ad; with 𝛤ad as a 282 

measure of the adiabatic rate of increase in liquid water content with respect to height; 283 

constant 𝑓ad is an estimate of the degree of adiabaticity; and ℎ represents the cloud top height.  284 

We then calculate droplet concentration with the relationship: Nd = Neff/k, with k assumed to be 285 

to 0.8 for marine stratiform clouds (Martin et al. 1994, Wood 2000)”. Effective radius (re) and 286 

LWP come from the daytime-only MODIS 3.7µm retrievals, so Nd is only reported during the 287 

day. 288 

 Estimating Nd from satellite retrievals requires a significant number of assumptions 289 

about the cloud properties (Fu et al. 2019). As for the CLWP mentioned above, two other Nd 290 

datasets are compared in order to better show the uncertainty in observed Nd. One dataset 291 

comes from Grosvenor & Wood (2018), which uses MODIS collection 5.1 optical retrievals and a 292 

different set of assumptions compared to the product described above. The other comes from 293 

the regressions described in McCoy et al. (2017) using aerosol concentrations from the 294 

Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2, Galero 295 

et al., 2017). 296 

 Cloud droplet number concentrations for cloudy portions of model grid boxes are 297 

available for day and night from both models. Cloud-top Nd was derived from CAM5 output for 298 
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scenes with total cloud fraction greater than 20% and then taking the in-cloud Nd of the upper-299 

most grid box below 350hPa where the cloud fraction is greater than 20%. The CAM5 Nd is very 300 

sensitive to the observation level within the cloud, in contrast to Nd behavior in most observed 301 

clouds. This routine was necessary to produce physically reasonable CAM5 Nd values. For the 302 

UKMET model a weighted vertical mean Nd was calculated, with the liquid water content on 303 

each level used for the weights. 304 

 305 

iv) boundary layer depth 306 

 Observed PBL depths (trade wind inversion height) come from Eastman et al. (2016 & 307 

2017). These estimates use the difference between ERA-Interim SSTs and MODIS cloud top 308 

temperatures (CTT) of a subset of clouds assumed to sit at the base of the trade inversion using 309 

the algorithm described in Eastman et al. (2016). The routine is tuned using the vertical feature 310 

mask product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the 311 

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO, Vaughan et al. 2004) that is co-312 

located in space and time with the MODIS data. Maximum cloud top height (CTH) is also 313 

calculated using this routine, but for the coldest cloud top within each box. 314 

 For the CAM5, PBL depth is estimated as the height below 11 km with maximum 315 

vertical-gradient in potential temperature. The PBL depth from the UKMET is assigned to the 316 

height at which RH declines most with increasing altitude as shown in Seidel (2010). An 317 

approach more comparable to the observations was developed for the UKMET model, where 318 

the cloud tops of boundary layer clouds were assumed to rest at the inversion (as diagnosed by 319 

the model boundary layer scheme), and this produced a comparable result to the RH method, 320 
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correlating with an R value above r = 0.95. Cloud top heights in the CAM5 contained too many 321 

outliers above 3km to attempt a similar comparison, so the potential temperature gradient 322 

method is used instead. 323 

 324 

v) Precipitation 325 

 Observed precipitation rate estimates (Average rain rates, Eastman et al. 2019) come 326 

from AMSR/E 89 GHz brightness temperatures (Tb, Wentz and Meissner 2004; Ashcroft and 327 

Wentz 2006), tuned using CloudSat Rain-Profile rain rates (Stephens et al. 2008; L’Ecuyer and 328 

Stephens 2002; Lebsock and L’Ecuyer 2011), AMSR/E column water vapor (CWV) observations 329 

(Wentz and Meissner 2004), and ERA5 SSTs and wind speeds (Copernicus Climate Change 330 

Service, 2017). The routine from Eastman et al. 2019 was updated for year 2009. This routine 331 

relies on the positive relationship between rainfall and warm Tb ( Miller and Yuter, 2013) and  332 

estimates rain rates from Tb after controlling for confounding variables: SST, CWV, and wind 333 

speed.  334 

 Precipitation rates in both models are area-average rain rates within each sample. Some 335 

UKMET rain rates exceeded the maximum observed rate by several mm/hr. These rates may be 336 

an unrealistic model value, or it is possible that the Tb-derived rain rates are not sensitive to 337 

rain rates above ~3 mm/hr. In order to improve comparability, UKMET rain rates exceeding the 338 

maximum observed rate of 3.1 mm/hr were removed from the analysis, which resulted in the 339 

exclusion of less than 0.06% of observations. Rain rates from AMSR/E tuned by CloudSat may 340 

also lack sensitivity to extremely light drizzle, or very small cells that do not fill a pixel. This may 341 



 16 

bias observed rain towards heavier-precipitating events, but is currently unavoidable given the 342 

difficulty in retrieving drizzle rates from satellites. 343 

 344 

d) predictor variables 345 

 Specific humidity above the PBL is taken at 700 hPa (q700) in both models and in ERA-346 

Interim. Lower Tropospheric Stability (LTS) is the difference in potential temperature (𝜃) 347 

between the surface and 700 hPa in both models and in ERA-Interim. Observed SST comes from 348 

the surface skin temperature in ERA-Interim. For the UKMET and CAM5, SST is set to the 349 

surface skin temperature, which changes smoothly based on monthly SST data from HadISST 350 

(Rayner et al. 2003). Wind speed (WSP) is defined as the 10-meter wind speed, different from 351 

the 925 hPa winds driving the trajectories. Ten-meter wind speed was not output in this CAM5 352 

version, which instead offers a wind speed at ~60 meters. The 10-meter winds are estimated 353 

using a power law relationship assuming minimal surface roughness and neutral stability, 354 

shown in equation 2 355 

 356 

                                                             𝑉'12 = 𝑉312 -
'
3
.
,

 Equation 2 357 

 358 

The wind profile power law exponent P is assumed to be 1/7 (Touma, 1977).  V10 and V60 are 359 

wind speeds at 10 and 60 meters, and the ratio between the lower and upper altitudes is 1/6. 360 

Subsidence is defined as the pressure velocity at 700 hPa (𝜔700) for all platforms. Positive 𝜔700 is 361 

motion moving downward.  362 

 363 
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3. Methods & Results 364 

a) Mean Lagrangian evolution 365 

 The 48-hour Lagrangian evolution of cloud variables are composited in Figure 2. Plots 366 

represent the mean of all trajectories in all regions for each platform. The vertical width of each 367 

plot represents the 2-s standard error of the mean. Models produce less cloud cover than 368 

observations (Figure 2a), especially the CAM5. Both models show stronger Lagrangian cloud 369 

declines than the observations. The MODIS COSP satellite simulated UKMET cloud cover (not 370 

shown) produces less daytime cloud cover than the UKMET output cloud variable, suggesting 371 

that the true discrepancy between models and observations may be greater. This is likely due 372 

to the MODIS instrument missing some small and optically thin clouds. In Figure 2b the UKMET 373 

shows more CLWP and the CAM5 shows less than the AMSR/E product used here, though all 374 

three show an increase over time. Light gray uncertainty bounds on the observed CLWP plot 375 

represent the range of CLWP values produced by the AMSR/E and MODIS, showing a great deal 376 

of uncertainty for the absolute values of observed CLWP. Figure 2c shows consistent Lagrangian 377 

declines in Nd, with the CAM5 and UKMET producing similar Nd, while observations show less. 378 

The light gray error bounds again represent the variability in the absolute values of Nd based on 379 

the spread of Nd values produced by the method shown here, the Grosvenor & Wood (2018) 380 

Nd, and the McCoy et al. (2017) MERRA-derived value. These wide bounds show a great deal of 381 

uncertainty, and suggest that the modeled Nd values fall within the uncertainty bounds 382 

produced by these differing methods. The observed PBL is deeper than the CAM5 (Figure 2d), 383 

but shallower than the UKMET. Maximum CTH is significantly higher in the CAM5 than in the 384 

observations or UKMET, suggesting CAM5 clouds are less sensitive to the inversion, causing 385 
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excess vertical cloud development instead of horizontal spreading. Modeled PBL depth exhibits 386 

more Lagrangian deepening compared to the observations. Rain rates (Figure 2e) are heavier in 387 

the CAM5 than in the observations or UKMET. Rain rates increase in both models and the 388 

observations, though more strongly in models. Overall, modeled clouds tend to be less 389 

extensive and prone to more Lagrangian deepening with stronger increases in rain rates 390 

compared to observations. 391 

  In Figure 3 we compare the mean 48-hour evolution of predictors in the same fashion 392 

as Figure 2. Average winds tend to increase slightly in the middle of our trajectories (Figure 3a), 393 

then subsequently decline. This wind speed maximum at 24 hours is stronger for the ERA-I, 394 

hinting at a possible sampling bias for the observations. However, a diurnal and regional 395 

breakdown of these mean winds showed this signal was consistent between regions and for 396 

day and night separately. Maps of ERA-I annual mean wind speed show maxima near the 397 

downwind edges of our grid boxes, so it is likely that many trajectories are passing through 398 

these maxima. The increase in CLWP and rain rate and the decline in Nd at 24-hours in Figure 2 399 

may be associated with this wind speed peak, perhaps through modified surface fluxes. Figure 400 

3b shows Lagrangian increases in q700 for all three plots. The UKMET is drier compared to the 401 

nearly equivalent ERA-I and CAM5. The evolution of w700 (Figure 3c), shows the UKMET as an 402 

outlier with greater subsidence, despite having the deepest PBL. All three show equivalent 403 

Lagrangian declines in subsidence. The Lagrangian evolution of LTS (Figure 3d) shows declines 404 

over time for all three curves, and equivalent stability between the ERA-I and UKMET, while the 405 

CAM5 is less stable. In Figure 3e SSTs show nearly identical increasing behavior, though the 406 

ERA-I shows less of an increase. 407 
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 A regional breakdown of mean Lagrangian evolution was performed to look for 408 

systematic regional biases in models and to see if the differences in mean Lagrangian behavior 409 

seen above are due to disagreements everywhere, or just in one region. For the most part, 410 

regional variability matched between models and observations with a few exceptions. The PBL 411 

in the CAM5 is much deeper than observations in the E Indian, but shallower in the SE Pacific 412 

and SE Atlantic.  Generally, both model PBLs were deeper and rainier in the E Indian compared 413 

to observations. Comparing Nd, the CAM5 has higher Nd in the SE Pacific, perhaps overdoing 414 

biomass burning effects there, while the UKMET shows greater Nd in the NE Pacific. Overall, 415 

differences are most apparent for droplet concentrations and PBL depths, suggesting that 416 

models may have a weaker grasp on those processes. 417 

 Normalized frequency distributions of cloud variables are compared at different 418 

observation times along trajectories in Figure 4. Distributions are plotted for each variable at 419 

three times for all of our trajectories in all regions at T= 0, 24, and 48-hours. Distributions are 420 

normalized between 0 and 1 individually for all three sampling times in order to compare the 421 

evolution of the shapes of the distributions. Differences are most striking for cloud cover, 422 

where both models generate bi-modal distributions, with peaks at around 10% and 100%. In 423 

contrast, the observed cloud cover distribution shows a single peak at the overcast end of the x-424 

axis. In observations, the cloud cover distribution gradually shifts from overcast towards broken 425 

cloud cover over time, while in models the distribution shifts from overcast to cloud-free. 426 

Distributions of CLWP appear similar for all three, though slimmer for the CAM5 and wider for 427 

the UKMET. Droplet concentration distributions appear similar for both models and 428 

observations, with a single peak, shifted to the right at earlier times. Distributions of PBL depth 429 
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show more Lagrangian deepening for the models compared to the observations, but all show a 430 

single peak between 1-2 km. For all three platforms, rain rates are usually light with fewer cases 431 

of heavier rain. 432 

 Differences in the mean values and Lagrangian evolution of cloud variables between 433 

models and observations could be explained by a few things. Model variables may be 434 

responding too quickly to environmental controls, or cloud variable sensitivity to those controls 435 

may be too strong or too weak. The following analyses will test for these possibilities using this 436 

Lagrangian framework. 437 

 438 

b) Time scales of cloud variables 439 

 As clouds evolve following the flow, they are constantly adjusting to perturbations 440 

within and surrounding the PBL. Using a Lagrangian framework it is possible to quantify the 441 

adjustment times of cloud variables by comparing initial values to subsequent values at a later 442 

time. If adjustment timescales of cloud variables are vastly different between models and 443 

observations, models may be modifying clouds too quickly or too slowly as the clouds respond 444 

to their environment. Disparities in these adjustment timescales could be the cause for 445 

differences in the mean behaviors of cloud variables shown above. Here we test for this by 446 

comparing characteristic adjustment timescales for cloud variables in models and observations. 447 

These timescales are first explored in Eastman et al. (2016), where cloud variable 448 

anomalies (CVAs, as defined in section 2) at later hours are plotted as a function of their 0-hour 449 

values. That work shows that, on average, the evolution of anomalies of cloud cover, LWP, Nd, 450 

and PBL depth can be modeled as a red noise process with a persistent characteristic 451 
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decorrelation timescale: the e-folding time (𝜏), defined as the time (in hours) that it takes for 452 

the lag autocorrelation to decline by a factor of 1/e, and is estimated using Equation 3: 453 

 454 

 𝜏 = 45
678[-(:)]

  Equation 3 455 

 456 

Where T is the observation time along the trajectory (T=12, 24, 36, and 48 hours), and r(T) is 457 

the slope of a line fit to the plot of anomalies at later observation times (y-axis) as a function of 458 

the 0-hour anomalies (x-axis). In Eastman et al. (2016) values of 𝜏 were on the order of 12-24 459 

hours depending on the variable, showing that CVAs following the flow evolve and respond to 460 

environmental perturbations most strongly on daily to sub-daily timescales. In Figures 5-7 we 461 

apply that analysis (Eastman et al. 2016, their Figures 6-7) to observed and modeled cloud 462 

variables.  463 

 Figures 5-7 are made by binning trajectories by their 0-hour CVA into six quantiles (x-464 

axis). The mean CVAs for those quantiles after they evolve along their trajectories are shown on 465 

the y-axis as a function of their 0-hour values. For each time T, lines are fit to the plots using a 466 

linear regression. Values of 𝜏 are calculated using Equation 3 and the slope of each line. As in 467 

Eastman et al. (2016), plots for each observation hour are generally linear, though more-so for 468 

observations than the models. 469 

 For the CAM5 (Figure 5), cloud cover and CLWP behave similarly (5a & b), with 𝜏 470 

increasing over time from ~12 to ~18 hours between T=12 and T=48. Values of 𝜏 are longer for 471 

Nd, PBL depth, and rain rate. Nd shows longer 𝜏 at later observation times, ranging from 35 472 

hours to 77 hours, while PBL depth 𝜏 increases with observation time from 21 to 27 hours. Rain 473 
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rates in the CAM5 have a stronger memory at short timescales, with more signal loss at later 474 

observation times. 475 

 UKMET timescales are shown in Figure 6. Timescales for cloud cover and CLWP are again 476 

similar to each other and to the CAM5, with 𝜏 increasing from ~10 to ~18 from T=12 to T=48. 477 

Timescales for Nd and PBL depth are longer, with 𝜏 for Nd between 15-29 hours and 𝜏 for PBL 478 

depth somewhat longer, between 23-35 hours. The precipitation plot appears very noisy with a 479 

great deal of uncertainty at times beyond T=12. Rain rates appear to have long memories, but 480 

these large numbers appear skewed by a batch of strongly negative initial anomalies that do 481 

not diminish in time. In frames a, b, and d the UKMET shows a tendency for initial anomalies on 482 

the far end of the negative side to damp out more quickly, skewing the left sides of the plots 483 

upward and driving greater uncertainty in the fits. This behavior indicates a tendency in the 484 

UKMET to too-quickly damp out negative extremes in cloud fraction, PBL depth, and CLWP. 485 

 Timescales for observed CVAs are compared in Figure 7. Once again, timescales are 486 

shortest for cloud cover and CLWP, increasing from around 𝜏=12-14 to 𝜏=20-21 hours from 487 

T=12-48 hours. For Nd, PBL depth, and rain rate, timescales are longer and increase with longer 488 

T. Droplet concentration anomalies show 𝜏 values between 22-25 hours, while PBL depth shows 489 

𝜏 from 16-25 hours and 𝜏	for rain rates between 16-21 hours. 490 

 A comparison of t at 24 hours for all variables is shown in Table 2. Adjustment 491 

timescales for cloud cover and CLWP in models and observations are reasonably comparable, 492 

evolving significantly within a diurnal cycle. However, there is a tendency for cloud cover and 493 

CLWP in models to evolve more quickly than for observations. These slightly shorter 𝜏 values 494 

hint at a faster cloud response to evolving environmental forcings in models. This could possibly 495 
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explain the faster Lagrangian declines in cloud cover in figure 2. However, this logic fails to 496 

explain the more extreme Lagrangian PBL deepening in models since 𝜏 values are longer for 497 

modeled PBL depth, suggesting that modeled PBL depth evolves more slowly on average. 498 

Differences in mean climatological PBL depth behavior may instead be explained by differing 499 

sensitivity to environmental forcing. Values of t for rain rate in both models are longer than in 500 

the observations, and the CAM5 t for Nd is also very long, indicating deficiencies in model rain 501 

and microphysical behavior. 502 

 503 

c) Effects of Predictor Variables 504 

 Cloud evolution can be conceptualized as an internal mechanical system adjusting to a 505 

changing environment. Given the ~12-36 hour timescales shown above, the strongest variability 506 

in this system is on the order of a single diurnal cycle for both models and observations. Clouds 507 

travel hundreds of kilometers in a day, so a Lagrangian framework is necessary to track cloud 508 

processes while they occur. In this section we compare observed and modeled cloud responses 509 

to predictors while following the flow for one day.  510 

 Predictor variables are selected based on how they can act to modify the clouds and the 511 

PBL: subsidence acts to press downward on the PBL from above; humid air in the free 512 

troposphere emits downwelling IR onto the PBL and mixes into the cloud top through 513 

entrainment; LTS modulates entrainment across the inversion through buoyancy differences; 514 

changes in SST modify latent and sensible heating into and out of PBL; surface winds mix this 515 

heating into the clouds and drive small-scale turbulent circulations. These processes do not all 516 

act on the clouds at the same speed, so a test was performed to see whether the initial (0-hour) 517 
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values or the 24-hour Lagrangian changes in predictor variable anomalies (PVAs) drove a more 518 

powerful CVA response for the observations. Results showed that the 24-hour Dw700 and 24-519 

hour DSST were stronger drivers of CVA variability than their 0-hour values, but for all other 520 

predictors their 0-hour values were stronger. Therefore, we use the coinciding 24-hour 521 

Lagrangian changes in SST and subsidence anomalies as predictors instead of their initial values. 522 

Internal cloud processes involve several variables adjusting in concert and modifying one-523 

another, so CVAs are also tested as predictors to show a more complete picture of how clouds 524 

respond to their environment and to internal perturbations. 525 

This analysis combines 24-hour trajectory segments containing both day-to-day and 526 

night-to-night changes and also combines different regions. To avoid biases associated with 527 

combining these trajectories, PVAs and CVAs are used instead of raw values.  528 

To test the effects of predictors, trajectories are subsetted by PVA value into s bins: -529 

2<s<-1, -1<s<0, 0<s<1, and 1<s<2. We use s bins in order to compare the power of predictors 530 

to one another (e.g. we can compare the change in cloud cover driven by a 1-s difference in LTS 531 

to the change driven by a 1-s difference in Dw700). The mean 24-hour Lagrangian change in the 532 

CVA (DCVA, defined as: CVA24-CVA0) is then calculated for all trajectories within each s bin.  533 

The DCVA is broken into two components as in Eastman et al. (2017) and Eastman and 534 

Wood (2018). 1) the change driven by the predictor variable being tested. 2) The change driven 535 

by the red noise behavior seen in the prior section and described in Eastman et al. (2016). 536 

Section 3b shows that CVAs tend to predictably damp out over time, so a group of trajectories 537 

with a mean positive CVA at hour 0 will show a negative change over time, basically a 538 

regression to the mean. When we subset trajectories based on predictors, the mean 0-hour 539 
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values of CVAs tend to be non-zero (e.g. a set of trajectories with high 0-hour LTS will begin 540 

with above-average 0-hour cloud cover). The subsequent mean change in the cloud variable will 541 

then be driven by the predictor and by the tendency to regress to the mean. We isolate the 542 

change in the CVA driven by the predictor by calculating a residual change, where the change 543 

driven by regression to the mean is predicted based on the linear relationships shown in 3b, 544 

and is then subtracted from the DCVA.  545 

Residual DCVA values are produced for each of the four s bins and the slope of the four 546 

points is estimated using a linear regression. This slope represents the mean change in CVA 547 

forced by the PVA, independent of red noise. Each predictor variable is tested while another is 548 

held constant in bins. The range of slopes produced while holding each other predictor constant 549 

produces the uncertainty bounds on the slope. Examples of these slopes are shown in Figures 8 550 

and 9, where the 24-hour residual cloud cover change forced by each predictor is shown for the 551 

models and observations. These results are reiterated in Figure 10 and expanded for all 552 

predictors. 553 

 The slopes in Figure 8 suggest fairly small cloud cover responses to internal cloud 554 

variables. Figures 8a and 8c show that cloud decline may be associated with high CLWP and 555 

deeper PBLs in both models and observations. The PBL depth appears to be the most consistent 556 

predictor, particularly in observations where the entire range of slopes is negative, agreeing 557 

with the conclusions of Eastman and Wood (2016), which showed that cloud cover declines in 558 

deep PBLs. Ranges of slopes in both models are wide, indicating more uncertainty depending 559 

on what is being controlled for. 560 
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 Figure 9 shows the cloud cover response to meteorological predictors. Here, agreement 561 

is seen in frames 9b and c where clouds in both models and the observations decline 562 

significantly with increasing w700  and drier q700. Ranges of slopes are all positive in 9b and all 563 

negative in 9c, suggesting a great deal of confidence there. Frames 9a and d show that clouds in 564 

observations and the UKMET respond positively to stronger surface winds and LTS, while the 565 

CAM5 clouds appear less sensitive. Frame 9e shows that both models generate cloud increases 566 

when SST increases, but observed clouds show a weak response. 567 

 The results from Figures 8 and 9 are reiterated in Figure 10, which represents slopes as 568 

bar plots. A positive CVA response to a positive PVA is shown by a bar plot pointing to the right, 569 

while a negative response is shown by a bar pointing left. The ranges of slopes shown by the 570 

shaded regions of Figures 8 and 9 are shown by horizontal error bars. Figure 10 shows the 571 

responses to predictors for cloud cover, CLWP, Nd , PBL depth, and rain rate anomalies. Values 572 

of s (the denominator in the slope calculation) vary between the three platforms. In order to 573 

improve equivalence the mean value of s from all three platforms is used here in the 574 

calculation of these slopes, allowing for direct comparison. 575 

 Figure 10 presents a great deal of information, so is broken down here by cloud-576 

modifying-mechanism. This allows for a systematic comparison of models and observations 577 

focused on cloud system processes responding to environmental forcings. 578 

 579 

i) Subsidence 580 

Increasing subsidence presses the PBL top downward, reducing PBL depth. This thins 581 

existing clouds, as seen by reduced CLWP, and completely dissipates some clouds by pressing 582 
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the inversion height down below the LCL as shown by the cloud cover response. Models and 583 

observations agree on this so far, however the Nd response is different between models and 584 

observations: Nd increases in models with increasing subsidence, while it decreases in the 585 

observations. This could be an observational issue because thinner, patchier clouds may have 586 

more cloud edges in the observation, biasing the Nd low. Conversely, models may overdo the Nd 587 

increase due to inadequate parameterizations. Strong rain declines are seen with increasing 588 

subsidence in the models. These strong rain responses may have to do with the long 589 

decorrelation timescales of model rain. The 24-hour change in rain rate anomaly predicted by 590 

red noise in models is small, so a moderate change driven by subsidence may produce a larger 591 

residual. Somewhat narrow error bounds on the strong rain response to subsidence shows that 592 

rain sensitivity to subsidence occurs independently of other variables, suggesting a somewhat 593 

direct rain-subsidence relationship which invites additional scrutiny. 594 

 595 

ii) PBL deepening driven by radiative cooling 596 

The PBL response to a dry overlying troposphere is different between models and 597 

observations. Observations here and in Eastman and Wood (2019) show that the PBL deepens 598 

in response to a drier overlying troposphere, as shown by low q700. This deepening is driven by 599 

increases in radiative cloud top cooling, which enhances turbulence and entrainment. Both 600 

models miss this mechanism, instead showing little PBL sensitivity to q700. This may explain why 601 

both models over-deepen the PBL offshore. If the effects of q700, which increases offshore and 602 

acts as a brake on PBL deepening, are neglected, clouds will deepen too quickly in the models. 603 

The discrepancy may be driven by the reduced cloud cover in the models. Fewer clouds means 604 
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less surface area emitting IR upward, limiting upward IR flux and reducing cooling and 605 

turbulence at PBL top. 606 

 607 

iii) Entrainment system  608 

The cloud response to higher q700 above the PBL is positive in both models and 609 

observations. This is likely due to the increased entrainment of water vapor causing less 610 

evaporation of cloud drops at cloud top. The unanimous, corresponding increase in CLWP 611 

supports this, along with increased rain.  612 

Inversion strength also modifies entrainment. Strong inversions are associated with 613 

more cloud cover in the observations and UKMET. Both models and observations show that 614 

high LTS is associated with less PBL deepening, lower CLWP, and lighter rain. This suggests that 615 

the inhibition of entrainment caused by high LTS leads to slower Lagrangian evolution of cloud 616 

variables. The CAM5 is an outlier here, showing little cloud cover sensitivity to LTS, which may 617 

help to explain the significantly lower CAM5 cloud cover in these regions of climatologically 618 

high stability. 619 

 620 

iv) Cloud microphysics and precipitation 621 

High Nd, which coincides with smaller cloud drop effective radii, inhibits precipitation 622 

and leads to persistent clouds (Albrecht et al., 1989; Christensen et al. 2020). Observations here 623 

show this, with a negative rain rate response to high Nd and a small corresponding cloud 624 

increase. Results show that the cloud response to this system is less powerful compared to 625 

some of the others discussed here, but this microphysical mechanism is resolved by the 626 
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observations. This process is not well simulated in the models, which show little cloud 627 

sensitivity to Nd when following the flow. The CAM5 appears to see a decline in precipitation 628 

associated with increased Nd, but the rest of this system is absent. Overall, this appears to be an 629 

area where models are underperforming. This is surprising, in particular, because previous 630 

studies have indicated that the LWP response to aerosols is likely overestimated in climate 631 

models (Wang et al., 2012). Additionally, Grosvenor and Carslaw (2020) use a newer version of 632 

the UKMET and show that additional aerosol suppresses precipitation and increases clouds in 633 

the North Atlantic, though that work did not study Lagrangian change as done here. As 634 

mentioned in section 3ci above, this motivates a closer look at model precipitation processes. 635 

 636 

v. Boundary layer decoupling 637 

 The cloud top-to-sea surface circulation is often decoupled in deeper PBLs, cutting off 638 

the direct supply of moisture and cloud condensation nuclei to the cloud layer, causing clouds 639 

to thin and dry. Observations show this effect with declines seen in cloud cover, Nd, rain rate, 640 

and CLWP for trajectories starting in deeper PBLs. The UKMET sees a similar cloud and Nd 641 

response, but the CLWP increase in deep PBLs is opposite to the observations. The CAM5 642 

produces cloud declines in deeper PBLs, but the Nd and CLWP both appear opposite to the 643 

observations, suggesting an incorrect mechanism linking PBL depth and cloud cover evolution 644 

there. The CLWP response to deep PBLs is inconsistent between models and observations here, 645 

and also shows a great deal of uncertainty. This suggests that models do not properly 646 

reproduce the changes in moisture flux into the cloud layer driven by PBL height/decoupling, 647 



 30 

possibly indicating shortcomings in simulating thermodynamic processes and lapse rates in the 648 

PBL. 649 

 650 

vi. Fluxes from surface winds and SST  651 

Stronger wind blowing over warming SST increases moisture and turbulent fluxes in the 652 

PBL, invigorating and thickening clouds, and deepening the PBL. All three platforms agree that 653 

CLWP is enhanced and the PBL deepens with stronger winds, but models show more PBL 654 

deepening compared to observations, while observations show greater increases in cloud 655 

cover. A likely explanation is that in models strong winds drive more PBL deepening, so the 656 

thicker clouds become more vertically extensive, rather than more horizontally extensive as in 657 

the observations.  658 

The cloud cover and Nd responses to DSST are strong and positive for both models, but 659 

nearly zero for the observations, suggesting the DSST is responsible for a greater share of 660 

surface fluxes in models than in observations. The PBL deepens in response to a warming SST in 661 

the observations and UKMET, but the response leans negative with much uncertainty in the 662 

CAM5. Taken together, these analyses suggest that fluxes driven by winds and SST manifest 663 

differently in models versus the observations. Modeled cloud cover appears oversensitive to 664 

SST changes and under-sensitive to wind speed, while observations show that DSST mainly acts 665 

on PBL depth with wind speed driving changes to cloud extent.  666 

 667 

4. Discussion  668 

 669 
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a) Model cloud processes and mean behavior 670 

Overall, results above suggest that these models tend to reproduce the subsidence and 671 

entrainment-of-humidity mechanisms well. However, the rain rate response to changing 672 

subsidence appears overdone in models, which may explain their stronger mean Lagrangian 673 

increase in rainfall, possibly overreacting to the mean decline in subsidence. The UKMET 674 

successfully simulates the effects of LTS on cloud variable evolution, though still shows less 675 

cloud cover sensitivity than observations. Cloud cover in the CAM5 shows no sensitivity to LTS. 676 

The weaker or nonexistent sensitivity of modeled clouds to LTS may explain the reduced cloud 677 

cover in these study regions, which are characterized by strong inversions. Further, the stronger 678 

Lagrangian reduction in model cloud cover could be explained by the lack of sensitivity to LTS 679 

and to faster characteristic timescales, allowing modeled cloud variables to evolve more 680 

quickly. 681 

These results showing strong cloud declines associated with increased subsidence add 682 

to those from Myers and Norris (2013), which show that clouds are less extensive with 683 

enhanced subsidence when LTS is kept constant. This work shows that model clouds respond to 684 

subsidence changes quickly and strongly, indicating that the downwind gradient of subsidence 685 

will be of great importance to cloud evolution along with the mean value of subsidence. New 686 

studies should take into account the changing subsidence gradient in these regions. It is 687 

encouraging that both models simulate the subsidence system well, adding credibility to the 688 

cloud response to weakening subsidence in global warming scenarios. Improvement in the LTS-689 

cloud relationships motivated here should further aid in simulating the cloud response to global 690 

warming.  691 
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Differences between the Lagrangian evolution of CLWP between the models and 692 

observations are apparent in Figure 2, where the UKMET shows significantly more CLWP, but 693 

less cloud cover than the observations. The results of Figure 10 show that UKMET CLWP is much 694 

more sensitive to nearly all predictors compared to the CAM5, and to some extent more 695 

sensitive than the observations. This hints at a system in the UKMET that tends to strongly 696 

modify cloud water, but not cloud extent. The CAM5 CLWP, meanwhile, tends to be less 697 

sensitive to predictors than the UKMET or observations, and also shows the least CLWP in 698 

Figure 2. 699 

Models are less consistent with observations for a variety of other mechanisms. Both 700 

models miss the radiative effects of overlying humidity on PBL deepening, possibly contributing 701 

to the increased climatological Lagrangian deepening seen in models compared to 702 

observations.  703 

Processes internal to the PBL may contribute to discrepancies in mean behavior, though 704 

their linkage to differences seen in Figure 2 are less clear. Models appear to miss aerosol-cloud-705 

precipitation processes when viewed from the Lagrangian reference frame. The aerosol-cloud-706 

lifetime effect appears absent in both models. Further, in many places the response of Nd to 707 

predictors disagrees between models and observations. This appears to be a particular 708 

weakness in these models, and suggests that further improvements in model microphysics may 709 

aid in their performance. Deepening-decoupling processes in the PBL are partially well 710 

represented, with clouds breaking up in deep PBLs for all three platforms. However, the 711 

coinciding CLWP and Nd behaviors show less agreement, hinting at possible shortcomings in 712 

model-produced thermodynamic processes or surface fluxes. The UKMET in particular seems to 713 
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increase CLWP in deep boundary layers, perhaps failing to properly decouple the cloud from 714 

surface moisture sources. It seems likely that the path from sea surface to cloud is not well 715 

simulated in models, where clouds are oversensitive to SST and under-sensitive to wind speed. 716 

These internal processes need further study in isolation in order to assess their effects on the 717 

mean behavior of modeled clouds. It will be necessary to simulate these processes correctly in 718 

order to predict systematic cloud responses to climate changes 719 

 720 

b) Differences in Variables 721 

 Due to observational limitations not all model output variables can be easily compared 722 

with observations. This is particularly a problem for measurements of CLWP, Nd, and PBL depth.  723 

These inconsistencies drive the need for model variables that can be compared more directly 724 

with observations in order to eliminate the discrepancies caused by observational issues rather 725 

than physical behavior. These discrepancies may partially cause the disagreements seen in 726 

Figure 2. Continuing improvements in satellite simulators for GCM output will go a long way 727 

towards improving these comparisons. Furthermore, sensor and observation technique 728 

improvements will hopefully shrink the wide ranges of variability seen in observations from 729 

different sensors in Figures 2b and 2c. 730 

 731 

c) Future work 732 

 The framework presented here can be applied to a limitless number of GCMs in order to 733 

test for consistency between models and observations. Future work seeks to streamline our 734 

process so that modeling groups can generate trajectories and variables from their model 735 
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output. By focusing on cloud mechanics on daily timescales, and using a time dimension to 736 

directly assess causality, this Lagrangian framework can add value and show which cloud 737 

processes are well simulated and which are lacking. Additional comparisons with global cloud-738 

resolving models may help us discern whether cloud responses are controlled by poorly 739 

resolved processes. Further, a comparison should be made between a free-running model and 740 

the same model with winds nudged by reanalysis fields, hopefully discerning whether cloud 741 

responses are due to differing meteorology or model mechanics. 742 

 743 

5. Conclusions 744 

 This Lagrangian analysis compares the time evolution of clouds and cloud variables in 745 

several ways. Results appear consistent with the “too few, too bright” issues mentioned in 746 

other work with models producing higher Nd and less cloud cover. Cloud tops in the CAM5 747 

appear to overshoot the trade inversion by several kilometers, while the observations and 748 

UKMET model do not show such extreme vertical development in the subtropics. Lagrangian 749 

tendencies of cloud variables and predictor variables are more consistent between platforms, 750 

though Lagrangian cloud cover decline and PBL deepening are stronger in the two models than 751 

in the observations. A comparison of the time evolution of predictors shows behavior 752 

consistent with a transition from a subtropical Sc to a tropical trade Cu environment, with 753 

declines in LTS and subsidence and increases in SST. 754 

 The time evolution of frequency distributions of cloud cover shows that both models 755 

generate bimodal distributions of cloud cover with peaks at overcast and below 25% cloud 756 
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cover. At later times the models tend to increase cloud amounts at the low peak. Observations 757 

disagree, showing distributions that tend to change from overcast to merely broken scenes. 758 

 Despite the differences in the evolution of frequency distributions, the characteristic 759 

timescales of cloud cover and CLWP, represented by the e-folding time (t), shows some 760 

consistency between both models and observations. For all three, cloud cover and CLWP have 761 

shorter t, between 11-19 hours, compared to PBL depth, Nd, and rain rates, which were 762 

consistently longer in models than observations, though showing more noise and significantly 763 

less consistency between platforms.  764 

 Finally, a comparison of responses to predictors shows that cloud cover and cloud 765 

variables in all three platforms are consistently and powerfully affected by Dw700. Increasing 766 

w700 drives declines in cloud cover, CLWP, PBL depth, and rain rate. This is opposite from the 767 

evolution of the mean state of the Sc-Cu transition where subsidence decreases as clouds 768 

decrease, thus this approach allows us to isolate impacts of predictors and test model 769 

responses in a way that is not possible using the mean trajectories alone. Free tropospheric 770 

humidity drives increases in cloud cover and CLWP for all three platforms, however models do 771 

not show that a drier overlying troposphere can lead to PBL deepening, which is shown in 772 

observations. Discrepancies in the cloud and cloud variable responses to other meteorological 773 

forcings and to internal variables suggests that cloud mechanics are not yet accurately 774 

represented in the models, with inconsistent responses to wind speed, SST, and PBL depth. This 775 

framework can be applied to any number of climate models in the future to diagnose 776 

shortcomings in cloud simulations and compare free-running climate models with those nudged 777 

by reanalysis winds. 778 



 36 

 779 

Acknowledgements: RE was supported by NASA CloudSat and CALIPSO Science Team award 780 

80NSSC19K1274. 781 

 782 

DPG was funded from the National Environment Research Council (NERC) funded “North 783 

Atlantic Climate System: integrated Study (ACSIS)'' project via NCAS, grant number 784 

NE/N018001/1. We acknowledge use of the MONSooN system, a collaborative facility supplied 785 

under the Joint Weather and Climate Research Programme, a strategic partnership between 786 

the Met Office and the Natural Environment Research Council.  787 

 788 

CRT's work was supported by the Exascale Computing Project(17-SC-20-SC), and conducted 789 

under the auspices of the U.S. Department of Energy by Lawrence Livermore National 790 

Laboratory under Contract DE-AC52-07NA27344. This research used resources of the National 791 

Energy Research Scientific Computing Center(NERSC), a U.S. Department of Energy Office of 792 

Science User Facility operated under Contract DE-AC02-05CH11231. 793 

 794 

Analysis scripts used to process model data can be found at: 795 

https://github.com/crterai/LagrangianAnalysis 796 

 797 
  798 



 37 

Data Availability 799 
 800 
ERA Interim data used here are available at:  https://doi.org/10.1002/qj.828. As in Dee et al. 801 
2011. 802 
 803 
ERA5 data (DOI: 10.5065/D6X34W69) used are available at: https://apps.ecmwf.int/data-804 
catalogues/era5/?class=ea 805 
 806 
MODIS collection 6 L3 data are available at: http://dx.doi.org/10.5067/MODIS/MYD08_D3.006 807 
 808 
AMSR/E L3 gridded day and night averages from Wentz et al. 2014 are available at: 809 
www.remss.com/missions/amsr 810 
 811 
AMSR/E 89 GHz Brightness temperatures from Ashcroft and Wentz (2006) are available at: 812 
https://doi.org/10.5067/YL62FUZLAJUT 813 
 814 
CloudSat Rain-Profile (Lebsock and L’Ecuyer, 2011) Data are made available here: 815 
http://www.cloudsat.cira.colostate.edu/data-products/level-2c/2c-rain-profile 816 
 817 
CALIPSO Vertical Feature Mask data are available: 818 
https://eosweb.larc.nasa.gov/project/calipso/lidar_l2_vfm_table 819 
 820 
The observed PBL and rain rate estimate data are processed using the above datasets and are 821 
also available from the author upon request. Rain rates should be publicly available when the 822 
data finish processing in mid-2020. 823 
  824 
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Tables 1133 
 1134 
 1135 

 1136 
 1137 
Table 1. A brief list of observed cloud variable sources. 1138 
  1139 

Cloud Variable Data Source (observations)

Cloud MODIS C6 L3 cloud mask

CLWP AMSR/E L3 LWP

Nd From MODIS c6 optical properties re and lwp, as in Eastman & Wood (2016)

PBL MODIS C6 CTT - ERA-I SST, tuned using CALIPSO VFM, using Eastman et al. (2016) routine

Rain AMSR/E 89 GHz Tb, trained using CloudSat
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 1140 
 1141 

24-hr 𝞽 CAM5 UKMET OBS 
Cloud Cover 15.9 13.4 19.4 
CLWP 16.3 13.3 17.5 
Nd 57.7 22 21.7 
PBL depth 27.1 30.8 23.8 
Rain Rate 43.7 66.4 20.2 

 1142 
Table 2. e-folding times (t) estimated using the (red, 24-hour) slopes in Figures 5-7 and 1143 
Equation 3. Values of t represent the time in hours for the lag autocorrelation for a cloud 1144 
variable to decline by a factor of 1/e as it evolves following the flow.  1145 
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 1146 
Figures 1147 
 1148 

 1149 
 1150 
Figure 1.  Composited mean forward-running trajectories from the CAM5 (red), UKMET (blue), 1151 
and ERA-Interim (black) compared for a single ‘launch point’ for our four study regions: a) the 1152 
NE Pacific, b) the SE Pacific, c) the SE Atlantic, and d) the E Indian Ocean. Trajectory beginnings 1153 
are shown as black circles. Trajectories are all generated using the isobaric wind field at 925 hPa 1154 
and run forward for 48 hours. Mean wind arrows, shown in gray, are based on the 925 hPa 1155 
wind field from the ERA-Interim. 1156 
  1157 
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 1158 
Figure 2.  The mean 48-hour evolution of our cloud variables: a) cloud cover, b) in-cloud liquid 1159 
water path, c) droplet number concentration, d) planetary boundary layer depth, and e) rain 1160 
rate. Means are generated by compositing all available trajectories from all available regions. 1161 
The (vertical) width of the lines represents the 2s standard error of the mean. Frame d shows 1162 
PBL depth along with an estimate of maximum cloud top height based on the highest clouds in 1163 
models and coldest clouds in the observations. The light gray error bounds in frames b and c 1164 
represent the multi-sensor variability in CLWP and Nd.  1165 
  1166 
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 1167 
Figure 3. The mean 48-hour evolution of our meteorological predictor variables: f) 10-meter 1168 
wind speed, g) specific humidity (q) at 700 hPa, h) subsidence at 700 hPa (pressure velocity, w), 1169 
i) lower tropospheric stability (the difference in potential temperature, q, between 700 and 1170 
1000 hPa), and j) rain rate. Means are generated by compositing all available trajectories from 1171 
all available regions. The (vertical) width of the lines represents the 2s standard error of the 1172 
mean. 1173 
  1174 
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 1175 
 1176 
Figure 4. Normalized frequency distributions of our cloud variables shown for three time steps: 1177 
0-hours, 24-hours, and 48-hours for all three platforms. Distributions are generated based on 1178 
all available observations at those time steps. 1179 
  1180 
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 1181 
Figure 5. CAM5 cloud variable anomalies at times T (y-axis) as a function of the 0-hour anomaly 1182 
(x-axis) for six bins of trajectories selected to have equal numbers of observations and binned 1183 
by 0-hour values. E-folding times (t) are calculated based on lines fit to the plots using a least 1184 
squares linear regression and equation 3. 1185 
  1186 
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 1187 
Figure 6. UKMET cloud variable anomalies at times T (y-axis) as a function of the 0-hour 1188 
anomaly (x-axis) for six bins of trajectories selected to have equal numbers of observations and 1189 
binned by 0-hour values. E-folding times (t) are calculated based on lines fit to the plots using a 1190 
least squares linear regression and equation 3. 1191 
  1192 
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 1193 
Figure 7. Observed cloud variable anomalies at times T (y-axis) as a function of the 0-hour 1194 
anomaly (x-axis) for six bins of trajectories selected to have equal numbers of observations and 1195 
binned by 0-hour values. E-folding times (t) are calculated based on lines fit to the plots using a 1196 
least squares linear regression and equation 3. 1197 
  1198 
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 1199 
Figure 8. Lines fit to plots of residual cloud cover change as a function of s-bins of predictor 1200 
variables, in this case other cloud variables are used as predictors. Lines are generated while 1201 
holding each of the other predictor variables (both cloud and meteorological) constant. The 1202 
shaded regions represent the range of slopes produced by holding the predictors constant. 1203 
Color coding is the same as in previous figures: CAM5 is red, UKMET is blue, and Observations 1204 
are black. 1205 
  1206 
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 1207 
Figure 9. Lines fit to plots of residual cloud cover change as a function of s-bins of predictor 1208 
variables, with meteorological variables external to the cloud deck used as predictors here. 1209 
Lines are generated while holding each of the other predictor variables (both cloud and 1210 
meteorological) constant. The shaded regions represent the range of slopes produced by 1211 
holding the predictors constant. Color coding is the same as in previous figures: CAM5 is red, 1212 
UKMET is blue, and Observations are black. 1213 
  1214 
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 1215 

 1216 
 1217 
Figure 10. Bar plots representing slopes as shown in Figures 8 and 9, with error bars 1218 
representing the range of slopes shown by the shaded regions of Figures 8 and 9. Columns of 1219 
plots are shown for: a) cloud cover, b) in-cloud liquid water path, c) cloud drop concentration, 1220 
d) planetary boundary layer depth, and e) rain rates. Bars extending to the right indicate a 1221 
positive cloud variable response to a 1-s positive deviation of that predictor variable. Values of 1222 
s are constant between the platforms for each predictor, allowing for improved comparability. 1223 
 1224 


