Factors leading to the breakup of marine Sc, a Lagrangian perspective using the A-Train

Ryan Eastman
Robert Wood

University of Washington
2014
The role of Sc decks in the climate

- Form in stable environments on large and small scales
 - In stable regions around midlatitude cyclones
 - Continent-sized cloud decks in the subtropics
- Act to cool the climate
 - Reflect an enormous amount of sunlight
 - Radiate LW similar to the surface

MODIS image courtesy Jeff Schmaltz
Sc climatology from surface obs

- Study Sc in eastern sub-tropical ocean basins, in regions of subsidence, offshore flow, and cool SST
- Looking for maxima near continents and declining Sc gradient offshore

Hahn & Warren Cloud Atlas: www.atmos.washington.edu/CloudMap
Shallow vs Deep Boundary Layers

(a) Radiative cooling → Entrainment → VERY DRY

Sea surface
800 m
Drizzle below thickest cloud
5 km

(b) Locally enhanced entrainment → Radiative cooling → VERY DRY

QUIESCENT → TURBULENT → MOIST → LCL
1.5 km
20-30 km
Stronger surface forcing

Wood 2012
Uncertainties concerning Sc breakup

- Many factors may contribute to Sc breakup over the remote ocean
 - Precipitation stabilizing the boundary layer
 - Condensation at cloud level, evaporation below
 - Removing CCN, encouraging precip, positive feedback
 - Weakening divergence offshore
 - Warming SSTs weakening the inversion
 - Boundary layer deepens, Sc layer decouples from surface
- Most of these things are correlated with one-another
24-hour Lagrangian Study

- Compute 24-hour trajectories from reanalysis data
 - ERA-Interim reanalysis U and V fields, 0.75° at 925 mb
 - For years 2007 & 2008 only for now
24-hour Lagrangian Study

- Start at randomly chosen points along A-Train swath, at least 200 km apart, Day and Night,
 - Over 60,000 individual trajectories
 - Only study trajectories moving east-to-west
24-hour Lagrangian Study

- Look at the A-train sounding at the first point
 - Sample Precip using CloudSat 'Rain Profile' product
 - Determines whether precipitation reaches the surface
 - A sample with any precip is considered 'precipitating'
24-hour Lagrangian Study

- Use CALIPSO Vertical feature mask for boundary layer depth
 - Look at the lowest 3 km of the atmosphere
 - Assign a boundary layer depth using cloud-top returns
CALIPSO Cloud Top Height

- Cloud top is not always obvious
 - Use histogram to find peaks in the frequency distribution of cloud tops below 3km
 - Peaks in the distribution are considered relevant if they are at least 40% as high as the highest peak
 - Choose the highest altitude relevant peak
24-hour Lagrangian Study

- Use MODIS at 0, 12, and 24 hours
 - MODIS cloud mask day or night for 100 km radius
 - Level 3 data on a 1x1 lat-lon grid
Precipitating versus dry trajectories

- Dry and precipitating trajectories should not be directly compared
 - Mean locations and distance travelled of dry and precipitating trajectories are different
 - Precip trajectories tend to go farther, and cover more CC gradient offshore

- We use seasonal cloud anomalies instead of actual amounts
MODIS Zenith Angle Bias

- MODIS senses more clouds at the edge of the swath due to:
 - Thin clouds appearing more opaque at high angles
 - Vertically developed clouds filling up more pixel

- Estimate day and night bias, and represent them as a polynomial, subtract from data
Biases in a Lagrangian study

- Most significant: A bias due to the differing initial cloud-cover anomaly distributions between precipitating and non-precipitating environments.

- Clouds are necessary for precipitation to occur, therefore:
 - Precipitating trajectories must start off with some cloud cover (usually lots of clouds)
 - Dry trajectories can start cloud-free
 - Dry trajectories can show larger cloud cover increases than precipitating
Biases in a Lagrangian study

- Directly comparing Delta Cloud Cover Anomaly (ΔCCA) is misleading.
- Not comparing samples that evolve in the same way, regardless of precip:
 - Dry trajectories can show a larger ΔCCA, due to 0% Cloud Cover values are only possible for dry.
Biases in a Lagrangian study

- More **positive** precipitating initial cloud cover anomalies (CCA)
- More **negative** dry initial CCA
- \(\Delta \text{CCA} \) must (in part) be a function of initial CCA
Predicting Δ Cloud Cover Anomaly

- ΔCCA(CCA(0)) for 12- and 24-hour trajectories
- Linear relationships, with the slope steepening over time
- ΔCCA can be represented as a function of initial CCA and time
- We can predict ΔCCA
Predicting Δ Cloud Cover Anomaly

- We now can use this linear relationship to compare the evolution of two samples with differing starting distributions of CCA.
- Compare the observed change with the predicted change for each trajectory.
Random vs. Actual ΔCCA

- eg: A trajectory begins with a cloud anomaly of +10%.
 - Using the previous figure, we predict a ΔCCA of -5% in 12 hours and -8% in 24 hours
 - Compare the actual ΔCCA to the predicted ΔCCA
 - Subtract the predicted ΔCCA from the actual ΔCCA to get DPΔCCA, the difference from predicted ΔCCA
 - Actual ΔCCA is -20%, for 12 hours, -25% for 24 hours
 - DPΔCCA(12) = -15%, DPΔCCA(24) = -17%
 - Look for variables that significantly alter the DPΔCCA, with no initial distribution bias
DPΔCCA and Precipitation

- Precipitation still appears to have an effect, though smaller
 - Difference of only 0.7 or 1.2%
 - Significant at 12 and 24 hours

- Both are positive
 - Due to residual zenith angle bias
 - Selection Bias (westward trajectories only)
Factors aside from precipitation

- Precipitation is correlated with other variables, which, in turn, are correlated with each other eg...
 - Precipitation tends to occur in deeper boundary layers ($r = 0.35$), and is slightly correlated with lower-tropospheric stability ($\theta_{700} - \theta_{1000}$, $r = -0.12$)
 - Derived from CloudSat Auxiliary reanalysis from ECMWF
 - Lower tropospheric stability values correlate negatively with boundary layer depth ($r = -0.45$)

- What is actually producing this result? Is precipitation the driving variable, or is it something correlated with precipitation?
Binning DPΔCCA for constant boundary layer depths

- Hold boundary layer depth constant in separate bins for precipitating and dry trajectories
 - Bins with equal N
- See if precipitation still has a significant affect
- Appears not to
Binning DPΔCCA for constant precipitation frequency (inverse)

- Hold precipitation frequency constant, see if shallow and deep boundary layers evolve differently
- They do
 - Shallow boundary layers persist
 - Deep boundary layers tend to break up
Binning $\text{DP}\Delta\text{CCA}$ for constant LTS ($\theta_{700} - \theta_{1000}$) Anomalies

- Boundary layer depth is well correlated with LTS
- Deep boundary layers break up more readily for bins of constant LTS
- Slopes suggest that LTS may also have an influence
Binning DPΔCCA for constant boundary layer depths (inverse)

- Invert the previous figure to see if LTS has an effect for bins of constant boundary depth
- Appears to have a significant effect
 - High LTS (strong inversion) allows clouds to persist
 - Low LTS associated with breakup
Results for binning DPΔCCA

- Precipitation does not appear to be a driver of cloud breakup
- Instead LTS and boundary layer depth both seem to matter more
- Strong inversions tend to maintain cloud cover independent of boundary layer depth
- Deep boundary layers tend to break up more readily independent of inversion strength