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ABSTRACT

A key to parameterization of subgrid-scale processes is the probability density function (PDF) of conserved
scalars. If the appropriate PDF is known, then grid box average cloud fraction, liquid water content, temperature,
and autoconversion can be diagnosed. Despite the fundamental role of PDFs in parameterization, there have
been few observational studies of conserved-scalar PDFs in clouds. The present work analyzes PDFs from
boundary layers containing stratocumulus, cumulus, and cumulus-rising-into-stratocumulus clouds.

Using observational aircraft data, the authors test eight different parameterizations of PDFs, including double
delta function, gamma function, Gaussian, and double Gaussian shapes. The Gaussian parameterization, which
depends on two parameters, fits most observed PDFs well but fails for large-scale PDFs of cumulus legs. In
contrast, three-parameter parameterizations appear to be sufficiently general to model PDFs from a variety of
cloudy boundary layers.

If a numerical model ignores subgrid variability, the model has biases in diagnoses of grid box average liquid
water content, temperature, and Kessler autoconversion, relative to the values it would obtain if subgrid variability
were taken into account. The magnitude of such biases is assessed using observational data. The biases can be
largely eliminated by three-parameter PDF parameterizations.

Prior authors have suggested that boundary layer PDFs from short segments are approximately Gaussian. The
present authors find that the hypothesis that PDFs of total specific water content are Gaussian can almost always
be rejected for segments as small as 1 km.

1. Introduction

Clouds vary on smaller scales than the grid box sizes
used in atmospheric numerical models.

One fundamental manifestation of subgrid cloud var-
iability is partial cloudiness. Because the fraction of a
grid box that is occupied by cloud greatly affects ra-
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diative transfer, cloud fraction parameterizations have
been developed or evaluated by many authors (see, e.g.,
Sundqvist 1993; Tiedtke 1993; Mocko and Cotton 1995;
Xu and Randall 1996a,b; and references therein).

Although cloud fraction is an important aspect of sub-
grid variability, it may be advantageous to parameterize
subgrid variability more generally. Even in overcast re-
gions, ignoring subgrid variability may lead to errors
when modeling the many microphysical processes and
thermodynamic properties that are nonlinear. To com-
pute the rates of such nonlinear processes, a model that
ignores subgrid variability would first compute grid box
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average properties and then insert these averages into a
microphysical formula. The result so obtained differs,
in general, from the quantity truly desired, which is the
microphysical rate averaged over the grid box (Fowler
et al. 1996; Fowler and Randall 1996; Stevens et al.
1996; Stevens et al. 1998; Kogan 1998).

A particularly pernicious class of nonlinearity occurs
when the formula for the microphysical rate is either
convex or concave.1 Then one may show that ignoring
subgrid variability leads to biases (Cahalan et al. 1994;
Rotstayn 2000; Pincus and Klein 2000; Larson et al.
2001). Because we define a bias to be an error that
always has the same sign, the errors associated with a
bias are strictly additive, rather than partially self-can-
celing. Such a bias occurs when a model diagnoses liq-
uid water content from a convex function of conserved
variables. Then the model sometimes underpredicts and
never overpredicts average liquid water content in partly
cloudy grid boxes, relative to the values that would be
obtained if the model accounted for subgrid variability.
Relatedly, it may be shown that such a model also un-
derpredicts average temperature. Finally, since the Kes-
sler parameterization for autoconversion of cloud drop-
lets to raindrops (Kessler 1969) is convex, ignoring sub-
grid variability leads to underprediction of Kessler au-
toconversion.

To parameterize cloud fraction, liquid water content,
temperature, or Kessler autoconversion rate, informa-
tion about the spatial arrangement of parcels within a
grid box is not required. What is needed in all cases is
the probability density function (PDF) of the relevant
microphysical properties over the grid box. In principle,
if the relevant PDF were known with perfect accuracy
and a local microphysical or thermodynamic formula
were formulated with perfect accuracy, then the grid
box average rate or property could be parameterized
with perfect accuracy. Therefore we believe that one
key to parameterization of the above quantities is the
PDF of microphysical properties.

Considering the fundamental role of PDFs in param-
eterization, few papers have used boundary layer ob-
servations to compute PDFs of conserved variables in
clouds. A number of studies have examined PDFs ob-
tained from aircraft legs through clear air (Banta 1979;
Grossman 1984; Cotton and Anthes 1989; Ek and Mahrt
1991). Furthermore, several studies have used satellite
retrievals to calculate PDFs of cloud optical depth,
which is an important quantity for radiative transfer (see,
e.g., Wielicki and Parker 1994; Barker et al. 1996). To
parameterize microphysical processes, however, what is
most useful is PDFs of conserved variables in cloudy
or partly cloudy regions. Such PDFs have been simu-
lated by numerical models and examined by several
authors (Bougeault 1981; Wyngaard and Moeng 1992;
Lewellen and Yoh 1993; Xu and Randall 1996b; Wang

1 A convex function is sometimes referred to as ‘‘concave up,’’
and a concave function, ‘‘concave down.’’

and Stevens 2000). However, obtaining PDFs from
models has a disadvantage over obtaining PDFs from
observational data: the domain of large eddy simulations
is usually limited to several kilometers, whereas vari-
ability of scalars in boundary layers often maximizes at
larger scales (Cotton and Anthes 1989, 373–383).
Therefore, a large eddy simulation may not produce the
full variability that should be accounted for within, say,
a 50-km mesoscale model grid box. Likewise, a model
with coarser resolution has a larger domain but com-
promises representation of variability at small scales.
[The recent high-resolution cloud-resolving simulation
of Tompkins (2001, manuscript submitted to J. Atmos.
Sci.) alleviates the problem greatly, but it is a simulation
of deep convective clouds, not boundary layer clouds,
which we study.] With the data used in the present paper,
we can examine PDFs from legs ranging in length from
2 to 50 km.

Two papers do examine the PDF of total specific wa-
ter content in clouds: Wood and Field (2000) provide
several plots of such PDFs, and Price (2001) obtains
such PDFs from a tethered balloon. Our paper extends
their work as follows. We study numerous PDFs from
boundary layers topped by stratocumulus, cumulus, and
cumulus rising into stratocumulus. Our primary goal is
to characterize these PDFs in terms of moments so that
they may be parameterized in numerical models. We
will address the question of how many moments are
needed to provide a satisfactory fit to observed PDFs
and propose specific families of PDFs that fit the ob-
served PDFs well. The PDF parameterizations that work
best depend on three moments. Although most models
lack this information, our results provide motivation for
modelers to seek ways of predicting or diagnosing high-
er-order moments. Next, we will calculate microphysical
biases and determine how effectively they are removed
when subgrid variability is parameterized by an ap-
proximate PDF. Finally, Manton and Cotton (1977) and
Sommeria and Deardorff (1977) suggested that PDFs
from short segments are approximately Gaussian; later,
Bougeault (1981) and Xu and Randall (1996b) argued
that PDFs from longer segments are non-Gaussian. We
shall use observational data and the Kolmogorov–Smir-
nov test to assess whether cloudy PDFs are Gaussian.

2. Theoretical background

This paper is motivated primarily by three tasks in
parameterization: 1) diagnosis of subgrid cloud fraction;
2) diagnosis of grid box average specific liquid water
content , and relatedly, the grid box average temper-ql

ature ; and 3) diagnosis of grid box average autocon-T
version, , as computed by the Kessler parameteri-AK

zation.2 This paper shall focus solely on warm boundary

2 In this paper, an overbar denotes a grid box average or leg average,
depending on context.
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layer processes and ignore ice. Then we can assume that
any water in excess of saturation immediately con-
denses. It turns out that to accomplish all three param-
eterization tasks, the PDF of only one variable is needed.
This variable, s, is useful because 1) it can be predicted
by a numerical model in terms of variables that are
conserved under condensation—hence s is conserved
under condensation as well; 2) we have approximately
s 5 ql if the total specific water content qt, including
liquid and vapor, exceeds saturation (although for un-
saturated fluid elements, ql is zero but s is negative);
and 3) the single variable s indicates how ql is affected
by variations in both qt and temperature.

Here s is defined as follows. We let qs(T, p) be the
saturation specific humidity, where T is temperature, and
p is pressure. We ignore ice processes. Then (Lewellen
and Yoh 1993; Sommeria and Deardorff 1977; Mellor
1977)

(1 1 b q )1 ts 5 q 2 q (T , p) , (1)t s l [1 1 b q (T , p)]1 s l

where

R e (T )d s lq (T , p) 5 , (2)s l R p 2 [1 2 (R /R )]e (T )y d y s l

R L Ldb 5 b (T ) 5 , and (3)1 1 l 1 21 2R R T c Ty d l p l

L
T [ T 2 q . (4)l lcp

Here L is the latent heat of vaporization, cp is the specific
heat at constant pressure, es is the saturation vapor pres-
sure over liquid, and Rd and Ry are the gas constants
for dry air and water vapor, respectively. Following
Sommeria and Deardorff (1977), we have defined the
liquid water temperature Tl. It is approximately con-
served under condensation. Unlike the liquid water po-
tential temperature, ul, Tl is not conserved under chang-
es in pressure.

Given the PDF of s, P(s), one can compute cloud
fraction, grid box average liquid water content and tem-
perature, and grid box average Kessler autoconversion
rate. Cloud fraction C is given by

`

C 5 P(s)H(s) ds, (5)E
2`

where H(s) is the Heaviside step function. This formula
states that the cloud fraction equals that portion of the
area under P(s) that corresponds to qt in excess of sat-
uration, that is, the area with s . 0. The grid box–
averaged ql is given, in terms of s and P(s), as

`

q 5 P(s)sH(s) ds. (6)l E
2`

Then the grid box average temperature is given inT

terms of and the conserved variable Tl via Eq. (4):ql

5 1 (L/cp) . The Kessler autoconversion rate isT T ql l

AK 5 K1(ql 2 qcrit)H(ql 2 qcrit), where qcrit is a critical
threshold below which no autoconversion occurs, and
K1 is a constant that governs the rate of autoconversion.
This paper adopts the values of qcrit (50.5 g kg21) and
K1 (51023 s21) used in the Pennsylvania State Univer-
sity–National Center for Atmospheric Research Meso-
scale Model version 5 (Grell et al. 1994). When liquid
is present, s approximates ql, and hence we can write
the grid box average of the Kessler autoconversion rate

in terms of s and P(s):AK

`

A (s) 5 P(s)K (s 2 q )H(s 2 q ) ds. (7)K E 1 crit crit

2`

We study the Kessler parameterization instead of other
schemes because it is widely used and thus has practical
importance, and it provides a simple illustration of ef-
fects that have relevance for more sophisticated auto-
conversion schemes. The Kessler scheme is convex and
is therefore associated with a bias, whereas most other
autoconversion schemes are not, strictly speaking, con-
vex, although they are nearly so.

3. Parameterizations of PDFs of s

Equations (5), (6), and (7) indicate the fundamental
importance of P(s) for certain aspects of parameteri-
zation. Namely, if a numerical model could predict P(s),
then it could also diagnose cloud fraction, , , andq Tl

Kessler autoconversion. But a PDF contains an enor-
mous amount of information, and hence explicit pre-
diction of a PDF is difficult and computationally ex-
pensive. Instead, we will suppose that the numerical
model predicts or diagnoses a small number of moments
of s. Then we will assume a functional form for P(s)
that depends on a small number of parameters. Given
the moments in a particular grid box, P(s) for that grid
box can then be determined. This approach to param-
eterization, the ‘‘assumed PDF’’ method, has been used
by Sommeria and Deardorff (1977), Bougeault (1981),
Chen and Cotton (1987), Randall et al. (1992), Frankel
et al. (1993), and Lappen (1999), among others.

The shape of a PDF is uniquely determined by spec-
ification of all of its infinitely many moments, if they
exist and if the magnitude of the higher moments de-
creases rapidly enough (for details, see Kendall and Stu-
art 1963, 109–112). However, numerical models can
feasibly predict or diagnose only a few moments, for
example, 1, 2, or 3. Therefore, it becomes important to
ascertain whether a few moments and an assumed func-
tional form of the PDFs can characterize atmospheric
PDFs with sufficient accuracy and generality. If so, and
if accurate methods to obtain low-order moments can
be developed, then the assumed PDF method offers
promise of providing a rather general subgrid parame-
terization, one that is based on a sound theoretical foun-



15 JULY 2001 1981L A R S O N E T A L .

dation, namely Eqs. (5), (6), and (7), and testable em-
piricism, namely the assumed form of the PDF. In ad-
dition, it guarantees that quantities like cloud fraction
and liquid water content are consistent with each other,
since both are diagnosed from the same PDF (Lappen
1999). Furthermore, if in a particular circumstance an
assumed PDF scheme performs poorly, one can improve
it either by predicting more moments or by using data
to refine the assumed functional form of the PDF, rather
than having to construct an entirely new scheme.

We will use observational data to evaluate eight dif-
ferent families of functions, listed below, that can be
used to parameterize a PDF P(s) with mean , standards
deviation s, and skewness Sk. Through experimentation
with many PDF parameterizations, we have found that
PDF parameterizations tend to perform better if they are
constructed so as to ensure that they have the same low-
order moments as the observed PDF insofar as possible.
This has guided our selection of parameterizations be-
low.

I. Single delta function (one parameter). This ‘‘pa-
rameterization’’ is simply the assumption that there is
no subgrid variability in s:

P (s) 5 d(s 2 s),d (8)

where d denotes the Dirac delta function. This distri-
bution is what is effectively assumed by models that
contain no representation of subgrid variability, via a
PDF or otherwise. This parameterization provides a
baseline against which we can measure the quality of
the more sophisticated parameterizations that follow.

II. Single Gaussian (two parameters). This parame-
terization is (Sommeria and Deardorff 1977; Mellor
1977)

21 1 s 2 s
P (s) 5 exp 2 . (9)og 1 2[ ]2 sÏ2ps

It has the virtue of depending on only two moments:
the mean and the standard deviation s; but it cannots
represent skewed PDFs.

III. Generalized gamma function (three parameters).
This parameterization is given by

Ml
M21 2l zs2s z0P (s) 5 |s 2 s | e , (10)G 0G(M )

where

2M 5 4/(Sk ) l 5 ÏM/s, s 5 s 2 2s/Sk, (11)0

and we restrict s to the range s . s0 for Sk . 0 and s
, s0 for Sk , 0, where Sk is the skewness of P(s). This
parameterization is a generalization of the PDF in Bou-
geault (1982). It allows for skewed PDFs but not bi-
modal PDFs.3

3 In this paper, the phrase ‘‘bimodal PDF’’ denotes a PDF that has
two local maxima.

IV. Double Gaussian (five parameters). This param-
eterization is the sum of two Gaussians:

2a 1 s 2 s1P (s) 5 exp 2dg5 1 2[ ]2 sÏ2ps 11

21 2 a 1 s 2 s21 exp 2 . (12)1 2[ ]2 sÏ2ps 22

Here s1 and s1 are the mean and standard deviation,
respectively, of one Gaussian with amplitude 0 # a #
1; s2 and s2 are the mean and standard deviation of the
other Gaussian. Predicting five moments in a numerical
model would be complicated and expensive, but we in-
clude this PDF in our comparison in order to ascertain
the best possible fit that can be expected from the double
Gaussian functional form. The procedure we used to fit
the PDF parameters (a, s1, s1, s2, s2) is described in
the appendix.

V. LWFGVC1 (three parameters). This PDF param-
eterization assumes the double Gaussian form (12) but
further assumes that the widths of each Gaussian are
equal and nonzero. Specifically, in (12), we set s1 5
s2 5 0.6s. The simplifying assumption of equal widths
permits an analytic solution for a, s1, and s2:

1/2
2 2 31 Sk /(1 2 s̃ )

a 5 1 2 sign(Sk) , (13)
2 2 35 6[ ]2 4 1 Sk /(1 2 s̃ )

1/2s 2 s 1 2 a1 2 1/2s̃ [ 5 (1 2 s̃ ) , (14)1 1 2s a

1/2s 2 s a2 2 1/2s̃ [ 5 2 (1 2 s̃ ) , (15)2 1 2s 1 2 a

where 5 s1/s 5 s2/s 5 0.6. We have assumed with-s̃
out loss of generality that s1 .s2.

VI. Double delta function (three parameters). This
parameterization consists of the sum of two delta func-
tions:

P (s) 5 ad(s 2 s ) 1 (1 2 a)d(s 2 s ).dd 1 2 (16)

A double delta function corresponds to letting s1 → 0
and s2 → 0 in (12). It is equivalent to a commonly used
double-plume scheme in which each plume is assumed
to be uniform (Lappen 1999). The locations of the delta
functions (s1 and s2) and the amplitude (a) are given in
terms of Sk, s, and by setting 5 0 in (13), (14),s s̃
and (15) (see Randall et al. 1992; Lappen 1999).

VII. Lewellen–Yoh (three parameters). Lewellen and
Yoh (1993) assume a double Gaussian PDF and then
eliminate two parameters so that the resulting PDF de-
pends only on the mean, variance, and skewness of s.
When the skewness vanishes, their PDF parameteriza-
tion reduces to a single Gaussian, but when skewness
approaches infinity, their PDF consists of one Gaussian
with infinitesimal width, and the other Gaussian with
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FIG. 1. To construct this plot, we divided the ASTEX dataset into
50-km legs and fit the resulting PDFs of s using the five-parameter
double-Gaussian PDF. Each triangle represents one 50-km leg. Here
s1 is the standard deviation of the Gaussian with the larger mean, s2

is the standard deviation of the Gaussian with the smaller mean, and
s is the standard deviation of the entire double-Gaussian PDF. The
solid line denotes the relationship between s1,2/s and skewness of s
assumed by LWFGVC2; the dashed line denotes the corresponding
relationship assumed by Lewellen and Yoh (1993).

width s1 → s. In this way, the Lewellen–Yoh param-
eterization can represent skewed PDFs.

VIII. LWFGVC2 (three parameters). The Lewellen–
Yoh parameterization represents observed PDFs of s
quite well, as we shall see. However, it would be difficult
to adjust this scheme if in the future it does not turn
out to fit a particular cloud regime or if an additional
moment becomes available to a model. LWFGVC2, like
Lewellen–Yoh, assumes a double Gaussian PDF and
parameterizes two parameters; but LWFGVC2 can be
readily modified upon inspecting the brief derivation of
it below. Following Lewellen and Yoh (1993), we note
that the definitions of the first three moments lead, re-
spectively, to the following three relations:

0 5 as̃ 1 (1 2 a)s̃ , (17)1 2

2 2 2 21 5 a(s̃ 1 s̃ ) 1 (1 2 a)(s̃ 1 s̃ ), and (18)1 1 2 2

2 3 2 3Sk 5 a(3s̃ s̃ 1 s̃ ) 1 (1 2 a)(3s̃ s̃ 1 s̃ ), (19)1 1 1 2 2 2

where

s s1 2s̃ 5 s̃ 5 , (20)1 2s s

and , s, and Sk are, respectively, the mean, standards
deviation, and skewness of the PDF. We have retained
the definition s̃1,2 [ (s1,2 2 )/s.s

At this point our goal is to reduce the number of
parameters to three. To do so, we construct formulas for
the widths of the Gaussians, s1 and s2, in terms of the
moments. We adopt the convention that the subscript 1
denotes the Gaussian with the larger mean. Using the
values of s1/s and s2/s computed by the five-parameter
double Gaussian, we plot s1/s and s2/s versus skew-
ness in Fig. 1. Based on this plot, we adopt the following
formula for s1 and s2:

s Sk s Sk1 25 1 1 g 5 1 2 g ,
2 2s sÏa 1 Sk Ïa 1 Sk

(21)

where we choose a 5 2 and g 5 0.6. This formula,
like Lewellen and Yoh (1993), ensures that when skew-
ness vanishes, the PDF reduces to a Gaussian (i.e., s1/
s and s2/s approach unity). Equation (21) is shown as
the solid curve in Fig. 1, along with the relationship of
Lewellen and Yoh (1993) (dashed line).

Now we solve for a, s̃1, and s̃2 in terms of 1, 2,ands̃ s̃
Sk. Using Eqs. (17), (18), and (19), we find the following
transcendental equation for a:

2 2 1/2Sk 2 {a(1 2 a)[1 2 as̃ 2 (1 2 a)s̃ ]}1 2

1 2 2a
2 23 3s̃ 2 3s̃ 11 25 a(1 2 a)

2 23 [1 2 as̃ 2 (1 2 a)s̃ ] 5 0. (22)1 2 6

Assuming that a value for a is found numerically, we
can then solve for s̃1, and s̃2 via the following formulas,
derived from (17), (18), and (19):

1/21 2 a
2 2 1/2s̃ 5 [1 2 as̃ 2 (1 2 a)s̃ ] and (23)1 1 21 2a

1/2a
2 2 1/2s̃ 5 2 [1 2 as̃ 2 (1 2 a)s̃ ] . (24)2 1 21 21 2 a

We have maintained the convention that s1 . s2.
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Although LWFGVC2 and Lewellen–Yoh reduce to a
Gaussian for zero skewness, LWFGVC1 does not.
Among the three-parameter PDFs, LWFGVC1 occupies
a middle ground in complexity. It is more realistic than
the double delta function parameterization and has the
advantage that it can be solved analytically, unlike the
Lewellen–Yoh or LWFGVC2 parameterizations. Be-
cause LWFGVC1 sets the widths of the Gaussians equal,
it fits highly skewed legs slightly worse than Lewellen–
Yoh or LWFGVC2.

The Gaussian, double Gaussian, or gamma function
forms can lead to nonzero probability of s when s is
large but noninfinite. Large negative or positive s cor-
responds to unrealistic values of qt and/or qs. The error
incurred is small and has been ignored.

4. Data and analysis procedure

This paper shall compare the aforementioned PDFs
with aircraft data from ice-free cloudy boundary lay-
ers—specifically, stratocumulus layers, cumulus layers,
and layers consisting of cumulus clouds rising into stra-
tocumuli. The data were obtained during the Atlantic
Stratocumulus Transition Experiment (ASTEX) field
experiment, which studied the transition from strato-
cumulus to cumulus boundary layers over the North
Atlantic Ocean in June 1992 (Albrecht et al. 1995), and
the First ISCCP (International Satellite Cloud and Cli-
matology Project) Regional Experiment (FIRE) field ex-
periment, which studied marine stratocumuli off the
coast of California in June and July of 1987 (Albrecht
et al. 1988). In ASTEX, the boundary layers often con-
tained cumuli rising into stratocumuli and sometimes
contained only cumuli. In FIRE, the boundary layers
were shallower and usually contained only stratocumuli.
The dataset includes a large number of entirely clear
legs as well as partly or entirely cloudy legs. We keep
the clear legs because it is important for a fractional
cloud cover parameterization to be able to predict the
occurrence of clear skies and the onset of cloudiness.

The data were obtained by the Meteorological Re-
search Flight C-130 aircraft with the following instru-
mentation. Liquid water content was measured with a
Johnson–Williams hot-wire probe, which has a response
time of about 1 s. Because of the slow response time,
we feel that 2 km is roughly the smallest scale at which
PDF of s can be constructed with reasonable accuracy.
In ASTEX, total water content was measured with a
fast-response Lyman-a hygrometer, logged at 64 Hz,
referenced to out-of-cloud data from a General Eastern
1011B dew/frost point hygrometer. In FIRE, total water
content was obtained by adding the liquid and vapor
content obtained from the Johnson–Williams probe and
the dew/frost point hygrometer. Temperature was mea-
sured using a Rosemount deiced total temperature sen-
sor and corrected for dynamic heating effects. For fur-
ther information about the instrumentation, see Rogers
et al. (1995).

In this paper, we restrict ourselves to boundary layer
clouds and hence exclude all legs whose mean pressure
is less than 600 hPa. Furthermore, for simplicity, we
examine only horizontal, not vertical, variability. Hence
we discard all legs whose pressure has a standard de-
viation greater than 1 hPa. One should keep in mind,
however, that within grid box–sized volumes there is
vertical variability that tends to broaden the PDF (see
Pincus and Klein 2000). The total number of 50-km legs
used was 184 for ASTEX and 92 for FIRE. A small
number of time series contained a narrow, clearly un-
physical spike. We removed such outliers because they
seriously distorted the higher moments. Finally, we per-
form no ensemble averaging or detrending of legs. Our
goal is primarily to improve cloud parameterizations in
numerical models, and Germano (1992) has shown that
large eddy simulations can be interpreted as spatially or
time-filtered (not ensemble averaged or detrended) so-
lutions of the Navier–Stokes equations. According to
Germano’s interpretation, what models need to param-
eterize is the subgrid variability within a grid box for
a single realization of a flow. This paper adopts this
point of view. We spatially box filter the data by trun-
cating all aircraft legs so that they have the same length,
for example, 50, 10, 2 km, etc. We did not examine
scales longer than 50 km because there are few legs in
our dataset that are appreciably longer than 50 km.

5. Examples of PDFs

To illustrate the complexity of atmospheric PDFs and
the quality of fits that can be expected from simple
parameterizations, this section displays four PDFs of s.
Each of the four PDFs corresponds to a single 50-km
leg.

The first three PDFs are derived from a stratocumulus
layer observed during the first Lagrangian intensive op-
erations period on 12–13 June 1992 (flight A209). Dur-
ing these three legs, the boundary layer was well mixed,
with little evidence of cumuli rising into stratocumuli.
Cloud base was at about 250 m, and the boundary layer
extended up to 700 m. See Bretherton and Pincus (1995)
for meteorological conditions. Figure 2a depicts the in-
terior of the stratocumulus layer. The PDF is unimodal
and unskewed. Such PDFs were commonly observed in
both cloudy and clear regions. Figure 2b depicts a PDF
from the upper region of the same stratocumulus layer.
The large negative skewness, 23.9, is due mostly to the
small clear region encountered several kilometers into
the leg. But negative skewness is also contributed by
narrow downward spikes throughout the leg. These re-
gions of low liquid water probably arise via entrainment
of dry air from above the cloud (Nicholls and Turton
1986). Figure 2c depicts the clear air region beneath the
stratocumulus layer. The PDF is weakly skewed but
strongly bimodal. Bimodal PDF were not uncommon in
the data. The bimodality in this particular case arises
because of mesoscale variability: s has relatively high
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FIG. 2. The left-hand panels depict four typical observed PDFs of s (bars), along with the fits
of LWFGVC2 (solid line) and the five-parameter double-Gaussian PDF (dashed–dotted line). The
right-hand panels depict the corresponding space series. Highly skewed PDFs tend to have long
tails.

values (;20.35 g kg21) in the first 30 km of the leg
and then shifts to lower values (;20.55 g kg21) in the
last 20 km. Note that because the value of s differs at
the end points of the leg, such a space series cannot be
obtained by averaging over the full horizontal extent of
a numerical model with periodic boundary conditions.

Figure 2d displays a fourth PDF. It is from a leg

observed on 22 June 1992 (flight A215) through cumuli
that were rising into broken stratocumuli. The PDF has
strong positive skewness, 2.1, caused by the small area
occupied by cumulus clouds.

Note that both the positively and negatively skewed
PDF (Figs. 2d and 2b, respectively) have long tails, and
do not resemble double delta function PDFs. This was
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FIG. 3. Errors in parameterized cloud fraction. To construct this
plot, the three datasets were divided into legs of a given length. Then
observed cloud fraction, Cobserved, and parameterized cloud fraction,
Cparameterized, were computed for the parameterizations listed in the leg-
end. Next we computed the standard deviation of (Cparameterized 2
Cobserved) over all the legs. Then we repeated the procedure for different
leg lengths.

a common feature of the highly skewed PDFs we ob-
served. Although we believe this is a physical property
of the PDFs, it is possible that some smoothing of the
PDFs may be caused by nonzero resolution of the data.
In the bimodal PDFs, one often cannot associate one
maxima with cloud and the other with clear air. In Fig.
2d, cloud is associated with only a portion of one Gauss-
ian.

The five-parameter double Gaussian parameterization
provides a good fit to all four PDFs, as it does for the
majority of PDFs in the dataset. LWFGVC2 fits all four
PDFs well except for the strongly bimodal PDF in Fig.
2c. LWFGVC2 (and Lewellen–Yoh) are designed to re-
duce to a Gaussian when skewness vanishes, and hence
they misrepresent unskewed, bimodal PDFs. Significant
improvements are likely only if the next higher moment
(i.e., the kurtosis) is incorporated into the scheme.

In summary, the data show that PDFs of s may be
highly skewed (either positively or negatively), may be
bimodal, but may also be unskewed and unimodal. Sim-
ilar complexity was found for PDFs of qt displayed by
Wood and Field (2000).

6. Comparison of parameterizations of the PDF of s

This section tests how well the aforementioned eight
parameterizations match observed PDFs of s, P(s), and
how well the parameterizations diagnose cloud fraction
and specific liquid water content .ql

We test the parameterizations separately on the AS-
TEX and FIRE datasets, rather than combining the two.
Furthermore, we form a third set by selecting all ASTEX
legs that intercepted some cloud and that occurred on
flights during which, according to observers’ notes, the
C-130 sampled cumulus layers with no stratocumulus
layer above or at most broken stratocumulus above. This
set of nine legs is denoted ‘‘ASTEX cumulus legs’’ in
what follows. Although this sample of cumulus legs is
small, a preliminary look at cumulus legs is worthwhile
because the statistics in cumulus and stratocumulus lay-
ers is expected to be quite different. We desire a pa-
rameterization that is sufficiently general to model both
types of layers.

Now we assess how well the PDF parameterizations
diagnose C and . For our purposes, it is not of concernql

to compare predicted C and with direct measurementsql

of these quantities. Therefore we derive the ‘‘observed’’
C and by integrating over P(s) as in Eqs. (5) and (6),ql

where P(s) is obtained by binning observed space series
of s. This procedure mitigates errors due to poor mea-
surements and binning of data. To obtain the afore-
mentioned eight parameterizations of P(s), we input ob-
served moments of s into the formulas in section 3.
Using observed moments isolates errors in the shape of
P(s) from errors that stem from poor prediction of these
moments by a numerical model.

The errors in diagnosis of cloud fraction for the eight
parameterizations are listed in Fig. 3. Figure 3 also in-
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FIG. 4. A scatterplot of parameterized vs observed cloud fraction
for three parameterizations. A perfect parameterization would have
all points lying along the solid diagonal line. The three-parameter
LWFGVC2 parameterization (*) is more accurate than the two-pa-
rameter Gaussian or Xu–Randall parameterizations.

cludes the cloud fraction parameterization of Xu and
Randall (1996a), a two-parameter PDF that uses relative
humidity and as predictors. The errors in cloud frac-ql

tion for all parameterizations are fairly small, because
1) we have largely eliminated all errors except misrep-
resentation of the shape of P(s), and 2) cloud fraction
is an integral of P(s)—hence positive and negative areas
under the integral partially cancel, and so even a fairly
poor fit to a PDF can yield an adequate prediction of
cloud fraction. From Fig. 3, we see that the single delta
function parameterization, that is, the assumption of uni-
formity, performs worst by far. Better than this are the
two-parameter Xu–Randall and three-parameter double
delta function parameterizations. Better than these is the
(two-parameter, unskewed) single Gaussian PDF. Better
than this are the other three-parameter parameterizations
(Lewellen–Yoh, LWFGCV2, LWFGCV1, and general-
ized gamma distribution). Of these, the three-parameter
generalized gamma parameterization performs slightly
worse, in part because for large skewness the general-
ized gamma parameterization has an (integrable) sin-
gularity at s ù s0, so that a bin placed at s 5 s0 has an
unrealistically large amplitude. Somewhat better than
the three-parameter parameterizations is the five-param-
eter double Gaussian parameterization, which performs
best overall, as expected.

To give a visual impression of the improvement due
to including an extra parameter, we display in Fig. 4 a
scatterplot of observed cloud fraction versus cloud frac-
tion predicted by the (two-parameter) Xu–Randall,
(two-parameter) single-Gaussian, and (three-parameter)
LWFGVC2 parameterizations. The decrease in scatter

due to the additional parameter is evident. An exception
to this rule is the three-parameter double delta param-
eterization, which usually performs worse than the two-
parameter single Gaussian (see Fig. 3).

With the exception of the single-Gaussian parame-
terization, the PDF parameterizations predict cloud frac-
tion comparably well at all leg lengths between 2 and
50 km. This implies that although variance and skew-
ness may depend strongly on scale, the families of three-
parameter PDFs we test are more or less equally valid
for all scales shown. This offers hope that three-param-
eter PDF parameterizations may be largely independent
of grid spacing from 2 to 50 km. The Gaussian PDF
performs poorly for cumulus legs at large length scales
because such legs contain skewed PDFs that lie outside
the Gaussian family (see Fig. 12 below). The Gaussian
PDF performs well for the FIRE data over a range of
scales because those PDFs lie within the Gaussian fam-
ily (even though large-scale PDFs have a large variance
and hence differ greatly from small-scale PDFs).

The errors in diagnosis of ql for the eight parame-
terizations are compared in Fig. 5. The results are similar
to those for predictions of cloud cover, except that the
five-parameter double Gaussian parameterization is no
longer clearly superior to the three-parameter parame-
terizations. Also, the double delta function PDF ranks
somewhat better and the generalized gamma function
parameterization ranks somewhat worse than their re-
spective rankings in the cloud fraction comparison.
However all parameterizations except the single delta
function predict well. Two scatterplots illustrating theql

quality of the LWFGVC2 and single-Gaussian fits are
given in Fig. 6. The single-Gaussian parameterization
fits the data about as well as LWFGVC2, except for the
large-scale cumulus legs (Bougeault 1981).

These results help determine how complex a subgrid
parameterization needs to be in order to have generality.
First, all parameterizations we test fit P(s) substantially
better than a single delta function, which corresponds
to assuming uniformity. Therefore, when the shape of
P(s) is important, it is probably better for a numerical
model to include any of the parameterizations we tested
rather than to assume uniformity within grid boxes. If
two parameters (e.g., mean and variance of s) are avail-
able, the (unskewed) single-Gaussian parameterization
probably performs as well as can be expected, given
that observed skewnesses in ASTEX can be either neg-
ative or positive, with a near-zero average (see Fig. 2
above and Fig. 12 below). However, the single-Gaussian
distribution does perform poorly for cumulus cloud legs
when large grid boxes (;50 km) are used. In these cases,
the skewnesses are usually large and positive (Fig. 12
below). If mean, variance, and skewness of s are avail-
able, then a significant improvement over the single-
Gaussian parameterization can be made. The Lewellen–
Yoh, LWFGCV1, and LWFGCV2 parameterizations ap-
pear to be general enough to adequately represent the
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FIG. 5. Errors in parameterized liquid water. To construct this plot,
the three datasets were divided into legs of a given length. Then
observed specific liquid water content, ql,observed, and parameterized
specific liquid water content, ql,parameterized, were computed for the pa-
rameterizations listed in the legend. Next we computed the standard
deviation of (ql,parameterized 2 ql,observed) (units g kg21) over all the legs.
Then we repeated the procedure for different leg lengths.

FIG. 6. A scatterplot of parameterized vs observed specific liquid
water content for two parameterizations. A perfect parameterizationql

would have all points lying along the solid diagonal line. The Gauss-
ian PDF underpredicts in ASTEX cumulus legs.ql

rather complex PDFs in stratocumulus and cumulus
boundary layers. Even in cumulus legs, they perform
almost as well as the five-parameter double Gaussian.
Therefore, we can conjecture that although the predic-
tion of an additional parameter, for example, kurtosis,
would improve the fit in some cases (see Fig. 2c), the
overall improvement would not be dramatic. The overall
performance of the PDF parameterizations is summa-
rized in Table 1.

7. Reduction of biases in numerical models

One purpose in parameterizing P(s) is to reduce or
remove the (systematic) biases in liquid water content
( ), temperature ( ), or Kessler autoconversion rateq Tl
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TABLE 1. Summary of errors in cloud fraction and specific liquid
water content. This table lists the error averaged over all points shown
in Figs. 3 and 5, i.e., averaged over all datasets and grid box sizes.

Standard deviation
of (Cparameterized

2 Cobserved)

Standard
deviation of
(ql,parameterized

2 ql,observed)
(1023 g kg21)

Five-parameter double Gaussian
LWFGVC1
Lewellen–Yoh
LWFGVC2
Generalized gamma distribution
Single Gaussian
Double delta function
Xu–Randall
Single delta function

0.010
0.015
0.016
0.017
0.024
0.027
0.047
0.047
0.093

3.3
3.0
3.0
3.4
8.5
5.6
4.6

19

FIG. 7. Parameterized vs observed average specific liquid water
content, for three leg lengths. The LWFGVC2 parameterization (*)
removes most of bias inherent in the single delta function parame-
terization (squares), i.e., the assumption of uniformity.

( ) that would occur if s were assumed to be uniformAK

throughout a grid box. Such biases arise when these
quantities are diagnosed from a function that is either
convex or concave. For instance, suppose that a nu-
merical model predicts P(s) and diagnoses via Eq.ql

(6). Now consider a grid box–sized volume that contains
some cloudy regions (s . 0) and some clear regions (s
, 0) but is, on average, just saturated (i.e., 5 0). As
numerical model that assumes that P(s) is a single delta
function, that is, ignores subgrid variability, would as-
sume that no cloud is present. But, in fact, in this ex-
ample, there does exist some cloud. Hence the model
would underestimate . For partly cloudy grid boxesql

without too much variability, this behavior is general,
as can be shown using a theorem known as Jensen’s
inequality (Cahalan et al. 1994; Larson et al. 2001). For
a similar reason, a model that ignores subgrid variability
tends to underestimate and (Larson et al. 2001).T AK

In this section, we address two questions: 1) How
large are the biases in , , and in the ASTEX andq T Al K

FIRE data? 2) Do the simple parameterizations dis-
cussed above capture enough of the variability to re-
move the biases?

First consider the bias in . Figure 7 plots , asq ql l

parameterized by LWFGVC2 and a single delta func-
tion, versus the observed . Because completely clearql

and completely overcast legs do not exhibit a bias, the
plot includes only partly cloudy legs. We see that using
the single delta function parameterization, that is, ig-
noring subgrid variability, never leads to an overesti-
mate of , as required by Jensen’s inequality. The biasql

is largest when has moderate values ( ù 0.1 g kg21).q ql l

This is because the bias turns out to be largest when
ù and qt is highly variable (Larson et al. 2001).q qt s

Figure 7 shows that LWFGVC2 is clearly superior to
the single delta function parameterization. Although
LWFGVC2 does make errors, the errors have either
sign, and consequently any residual under- or overes-
timate is barely discernable.

The bias is leads to a bias in : if a model un-q Tl
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FIG. 8. Parameterized temperature difference vs observed temper-
atures, for three different leg lengths. The single delta function pa-
rameterization (squares), which assumes the grid box is uniform, has
a cold bias, whereas the LWFGVC2 parameterization (*) is not sys-
tematically biased.

derestimates and predicts without bias, then Eq.q Tl l

(4) shows that the model also underestimates . TheT
magnitude of the temperature bias is illustrated in Fig.
8. We see that neglecting subgrid variability never leads
to an overestimate of , as required. Although the meanT

underestimate for various subsets of partly cloudy grid
boxes ranges from 0.04 to 0.08 K (see Fig. 10), in par-
ticular legs it can be as large as a few tenths of a Kelvin
(Fig. 8). A buoyancy deficit of several tenths of a Kelvin
may significantly influence convective dynamics of in-
dividual clouds in a numerical simulation. The
LWFGVC2 parameterization eliminates the systematic
underestimate, although errors of either sign remain, of
course.

Finally, the bias in Kessler autoconversion is illus-
trated in Fig. 9. The bias is largest when autoconversion
has moderate values, that is, when the layer is weakly
drizzling (Larson et al. 2001). Again the LWFGVC2
parameterization performs well.

Figure 10 shows how the magnitude of the biases
varies with leg length. The ql and T biases are plotted
only for partly cloudy legs; likewise, the Kessler biases
are plotted only for precipitating legs. (The fraction of
partly cloudy and precipitating legs in the datasets both
decrease monotonically with decreasing leg length.)
Figures 10a,c show that as leg length increases, there
are increases in both the relative ql bias, [ 2 ql( )]/q (s) sl

, and the relative Kessler autoconversion bias,q (s)l

[ 2 AK( )]/ . This is partly because for longerA (s) s A (s)K K

leg lengths, ql( ) and AK( ) are more likely to vanish,s s
which leads to a relative bias of unity. In contrast to
the relative biases, the absolute T bias, 2 T( ),T(s) s
does not vary systematically with increasing leg length,
and the absolute Kessler bias, 2 AK( ), decreases.A (s) sK

The absolute Kessler bias decreases because both the
unbiased and biased Kessler autoconversion rates de-
crease when they are averaged over increasing leg
lengths. This does not mean that reducing grid spacing
results in a more biased simulation. At the smaller leg
lengths, the fraction of legs that precipitates is smaller,
so that the absolute bias averaged over all grid boxes,
whether precipitating or not, is smaller.

8. Gaussianity of small scales

Are atmospheric PDFs normally distributed? Manton
and Cotton (1977) and Sommeria and Deardorff (1977)
suggested that PDFs from short legs are Gaussian. The
observational work of Banta (1979) hinted that this may
not be true for PDFs from longer legs in subcloud re-
gions. To our knowledge, the hypothesis of Gaussianity
has not been tested using observations from cloudy re-
gions.

To address this question, we examine PDFs calculated
from legs as short as 200 m. Because of the slow re-
sponse time of the liquid water probe, we cannot com-
pute the PDF of s in such small legs. Instead, we com-
pute PDF of the total specific water content qt measured
during ASTEX. These measurements were made with
a fast-response Lyman-a hygrometer, which was logged
at 64 Hz. Since the C-130 aircraft flew at approximately
100 m s21, a PDF constructed from a 200-m segment
contains 128 points.
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FIG. 9. Parameterized vs observed autoconversion, according to
the Kessler formula, for three leg lengths. The LWFGVC2 PDF pa-
rameterization (*) removes most of the bias in the single delta function
parameterization (squares), which assumes uniformity.

To assess whether or not the PDFs of qt, P(qt), are
normal, we use the Kolmogorov–Smirnov test, because
it does not require binning of the data and hence is free
from ambiguities due to choice of bin width (Wilks
1995). Our null hypothesis, for a given leg, is that the

distribution of qt is drawn from a Gaussian distribution.
We reject this hypothesis if the probability that it is true
is less than 5%. The choice of rejection level is some-
what arbitrary, but 5% is commonly used (Wilks 1995).
Our results are shown in Fig. 11. At the smallest leg
length (200 m), we can reject the hypothesis of Gaus-
sianity for 90% of the ASTEX legs and over 92% of
the ASTEX cumulus legs. For lengths larger than 1 km,
we can reject the hypothesis for nearly all legs. How-
ever, this does not allow us to conclude that long legs
are less Gaussian than short legs. The primary reason
that Gaussianity is rejected more often for long legs is
probably that the Kolmogorov–Smirnov test is much
more powerful for long legs, which have more sample
points. Because the Kolmogorov–Smirnov test can de-
tect such small deviations from Gaussianity, the test
allows us to conclude that atmospheric PDFs, strictly
speaking, are not usually drawn from a Gaussian dis-
tribution, even though in most cases the Gaussian pa-
rameterization still leads to an adequate prediction of
quantities like cloud fraction. A mediocre approxima-
tion to a PDF can still yield an acceptable approximation
of derived quantities.

Why are so many legs non-Gaussian? To address this
question, we examine the skewness of the legs. Suppose
a series of random samples is drawn from a Gaussian
distribution, and the skewness of each sample is re-
corded. Then the mean of the skewnesses is zero and
the standard deviation of the skewnesses is approxi-
mately , where N is the number of points in theÏ6/N
sample (Stuart and Ord 1987, p. 338). In Fig. 12, we
compare these values with the skewness observed in the
data. We find that in the overall ASTEX dataset, the
skewness can vary from sample to sample much more
than one would expect if the parent distribution were
Gaussian. Therefore, one reason that the observed PDFs
are nonnormal is that their skewnesses vary greatly. In
the cumulus legs, the variation of skewness is large, but
also the mean skewness becomes significantly positive
( 0.5) for legs longer than several kilometers. For;$
long legs, therefore, the average skewness is small in
general but large in cumulus legs.

We perform the same analysis for the kurtosis, /4s9
( )2 2 3. (A large positive kurtosis implies a strongly2s9
peaked PDF with long tails.) If random samples are
drawn from a Gaussian distribution, the mean of the
kurtosis is zero and the standard deviation is approxi-
mately (Stuart and Ord 1987, p. 338). In Fig.Ï24/N
13, we compare these values with observed kurtosis.
We find much the same as for the skewness. The values
of kurtosis vary more than expected for a Gaussian dis-
tribution, and they are strongly positive for long cu-
mulus legs.

One case in which non-Gaussian PDFs are especially
likely to occur is at cloud edge. A leg that straddles a
cloud edge may contain large values of qt in cloud, small
values of qt in the clear air outside the cloud, and few
intermediate values of qt. The resulting PDF of qt is



15 JULY 2001 1991L A R S O N E T A L .

FIG. 10. (a) The relative bias in specific liquid water content, [ 2 ql( )]/ , as a function ofq (s) s q (s)l l

leg length, for three datasets. (b) The absolute temperature bias, 2 T( ). (c) The relative KesslerT(s) s
autoconversion bias, [ 2 AK( )]/ . (d) The absolute Kessler autoconversion bias, 2A (s) s A (s) A (s)K K K

AK( ).s

FIG. 11. To construct this plot, we divided ASTEX data for total
specific water content (qt) into legs of a given length. Then the Kol-
mogorov–Smirnov test was used at the 5% level to test the hypothesis
that the observed PDFs of qt are drawn from a Gaussian distribution.
Finally we repeated the process for different leg lengths. The plot
shows the fraction of legs for which the hypothesis can be rejected.
For scales greater than 1 km, the vast majority of legs are not Gauss-
ian.

FIG. 12. To construct this plot, we divided ASTEX data into con-
stant-length legs of total specific water content qt. Then we computed
the skewness of each leg. The markers are placed at median values
of skewness over the set of legs; the error bars contain 68% of the
skewness values. The solid lines correspond to the standard deviation
of skewness expected from a Gaussian sample and encompass roughly
68% of the values of skewness expected from a Gaussian sample.
The plot shows that at large scales, the observed spread of skewness
is larger than expected for Gaussian samples. Also, in cumulus legs
at large scales, the skewness tends to be positive rather than zero as
for a Gaussian PDF.
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FIG. 13. To construct this plot, we divided ASTEX data into con-
stant-length legs of total specific water content qt. Then we computed
the kurtosis of each leg. The markers are placed at median values of
kurtosis over the set of legs; the error bars contain 68% of the kurtosis
values. The solid lines correspond to the standard deviation of kurtosis
expected from a Gaussian sample and encompasses roughly 68% of
the expected values of kurtosis from a Gaussian sample. The observed
kurtosis is more scattered—and in long cumulus legs, more positive—
than one would expect from a Gaussian PDF.

bimodal. Although bimodal PDFs can arise because of
mesoscale variability (see Fig. 2c), they can also occur
at cloud edge even at very small scales.

9. Conclusions and discussion

We have used observational data to calculate prob-
ability density functions (PDFs) for stratocumulus, cu-
mulus, and cumulus-rising-into-stratocumulus layers.
The observed PDFs are complex. Although many of the
PDFs are Gaussian, others are strongly bimodal, highly
positively skewed, or highly negatively skewed. The
highly skewed PDFs tend to have a long tail rather than
a double delta function shape.

Despite this complexity, the observed PDFs can be
adequately modeled by simple parameterizations. PDF
parameterizations that depend on three parameters, for
example, mean, variance, and skewness, appear to be
general enough to model both stratocumulus and cu-
mulus-layer PDFs. Particularly good fits were provided
by the Lewellen–Yoh, LWFGVC2, and LWFGVC1 pa-
rameterizations. Remarkably, these schemes provided
uniformly good diagnoses of cloud fraction and specific
liquid water content over length scales ranging from 2
to 50 km, with no change in adjustable coefficients.
Hence these parameterizations may be satisfactory over
a wide range of grid box sizes. If three parameters are
not available to a model, but two parameters are, then
the model may use the single-Gaussian parameteriza-
tion, which fits the data fairly well except for cumulus-
layer PDFs when the grid box size exceeds roughly 25
km.

We examined the magnitude of biases in mean spe-
cific liquid water content , mean temperature , andq Tl

mean Kessler autoconversion that would occur ifAK

these quantities were diagnosed without accounting
for subgrid variability. In ASTEX and FIRE legs, the
mean relative bias in partly cloudy legs is roughlyql

0.65 to 1, the mean absolute bias in partly cloudyT
legs is roughly 0.04 to 0.08 K, and the mean relative

bias in layers with autoconversion is roughly 0.53AK

to 1. In individual cases, the absolute temperature bias
can reach several tenths of a Kelvin. These biases can
be largely removed by use of simple PDF parame-
terizations. How large are biases for grid boxes as
large as those in general circulation models? The pre-
sent data only permit speculation. The biases studied
here tend to increase if the variance of s increases. If
larger volumes contain more variance, as one would
expect, then the biases would probably be larger in
general circulation models than mesoscale models.
The biases are also affected by the skewness of s, but
it is unclear whether or not skewness increases for
grid box sizes larger than 50 km (see Fig. 12).

We used the data to examine the hypothesis that
atmospheric PDFs are Gaussian. For ASTEX data,
this hypothesis can be rejected for legs longer than 1
km. Rather, ASTEX PDFs from long legs have large
positive and negative skewness and kurtosis. For
shorter legs, lack of sample points renders the results
less conclusive.

In order to implement the Lewellen–Yoh,
LWFGVC1, or LWFGVC2 parameterizations, a nu-
merical model must provide the mean, variance, and
skewness of s for each grid box and time step. This
is a difficult problem in higher-order closure that we
leave for future work.
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APPENDIX

Computation of Parameters in the Five-Parameter
Double-Gaussian PDF

To calculate best-fit values for the five PDF param-
eters (a, s1, s1, s2, s2) in the five-parameter double-
Gaussian PDF, we use observational data and the fol-
lowing procedure. First, we choose first-guess values of
these five parameters. Then, using this first guess, we
compute the parameterized PDF Pdg5(s). To assess how
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closely Pdg5(s) fits the observed histogram of s, we cal-
culate the statistical measure x2, which is a measure of
the discrepancy between two histograms (Press et al.
1992, p. 621). The calculation of x2 is repeated for
values of the five parameters in the entire relevant region
of parameter space surrounding the first guess, sampling
points in parameter space at coarse resolution. From this
large collection of sets of parameters, we select the set
that corresponds to the best fit, that is, the smallest x2.
This procedure ensures that we find a global, not merely
local, minimum. Since we can only cover the parameter
space at coarse resolution, we then refine this solution
by using it as a first guess in the Nelder–Mead simplex
minimizer (Press et al. 1992, 408–412) that is included
in MATLAB.
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