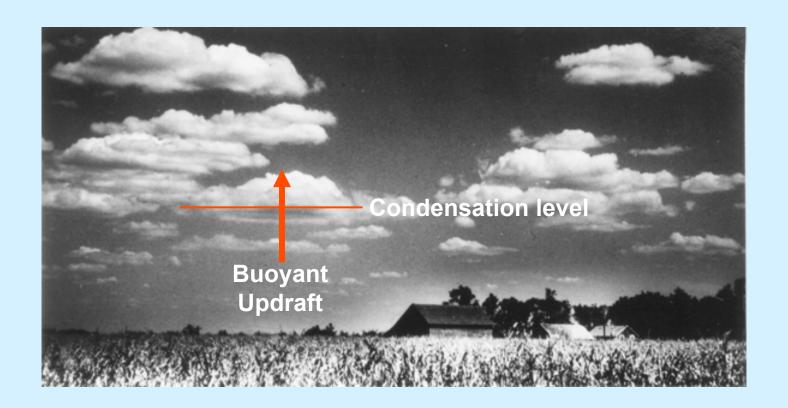
Basic Convective Cloud Dynamics

Cumulus and cumulonimbus

Cumulus

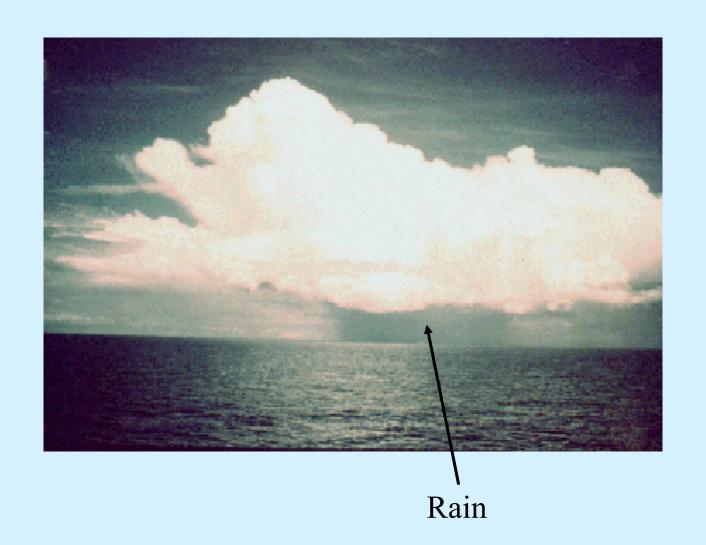


Fair weather type

Cumulus congestus

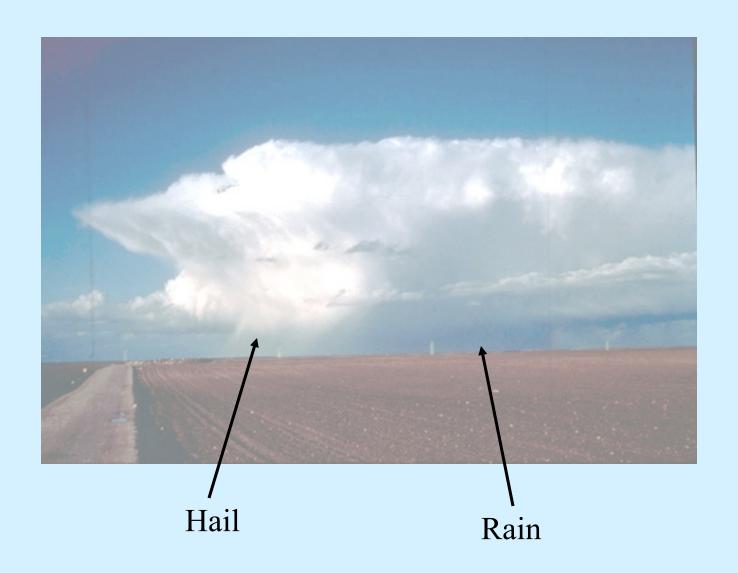
Cumulus congestus

Cumulonimbus



More often: Cumulus congestus develops an anvil

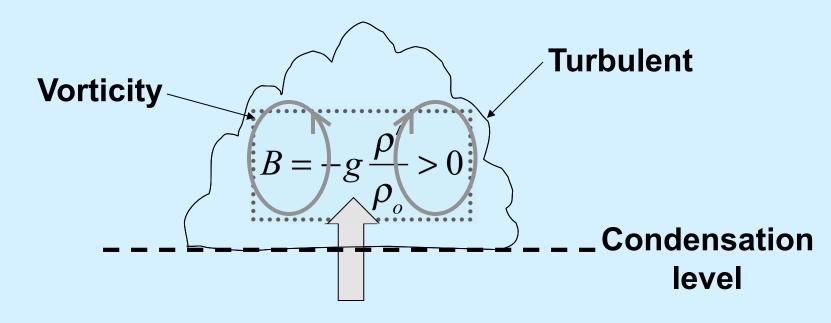
Cumulonimbus with Anvil



Tornadic Cumulonimbus

All Cumulus and Cumulonimbus

Buoyancy phenomena



Basic equations for vertical acceleration, mass continuity, & buoyancy

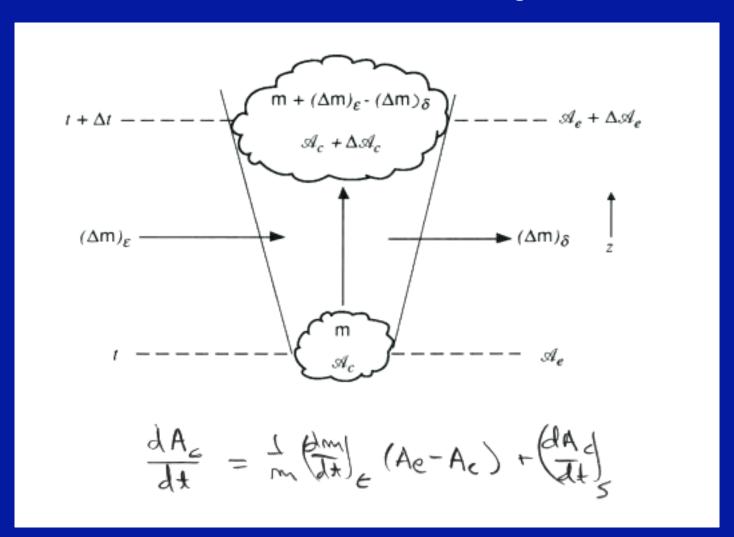
$$\frac{dw}{dt} = -\frac{1}{e_{e}(z)} \frac{\partial f'}{\partial z} + B$$

$$\nabla \cdot e_{e}(z) \frac{\partial f}{\partial z} = 0$$

$$B = -\frac{e'}{e_{e}(z)} = \frac{e'}{f_{e}(z)} = \frac{e'}{f_{e}(z)} \frac{f'}{f_{e}(z)} \frac{f'}$$

1-D Lagrangian model

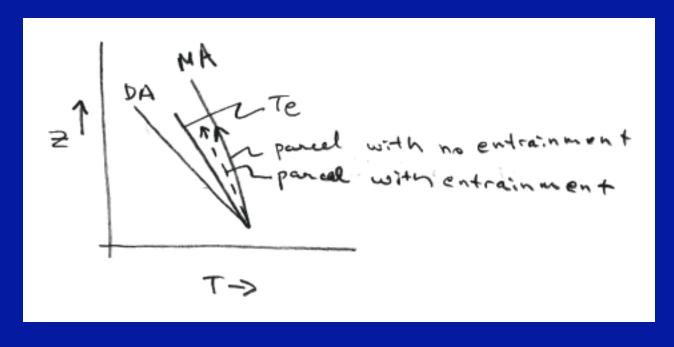
Based on classic model of continuous & homogeneous entrainment



1-D Lagrangian model

Temperature equation

Predicts parcel temperature & buoyancy



1-D Lagrangian model

Momentum equation

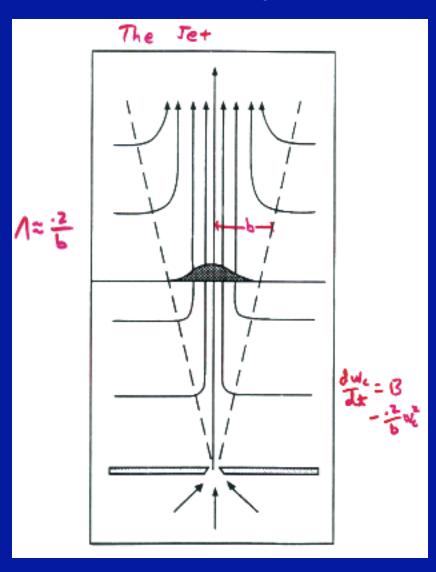
Kessler warm cloud microphysics

$$q_{vc} = q_{vs}[T_c, p(Z)]$$

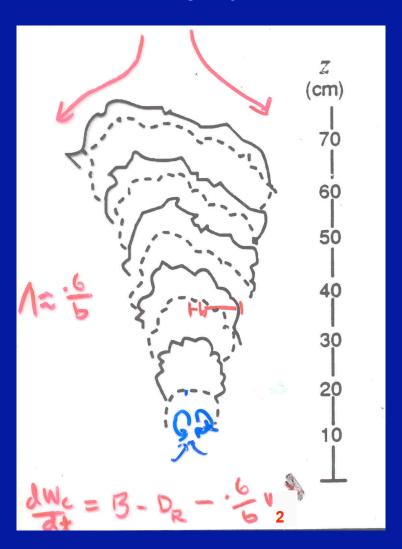
$$w_c \frac{\partial q_c}{\partial z} = -w_c \frac{\partial q_{vs}}{\partial z} - A - K - w_c \lambda q_c$$

$$w_c \frac{\partial q_r}{\partial z} = A + K + F - w_c \lambda q_r$$

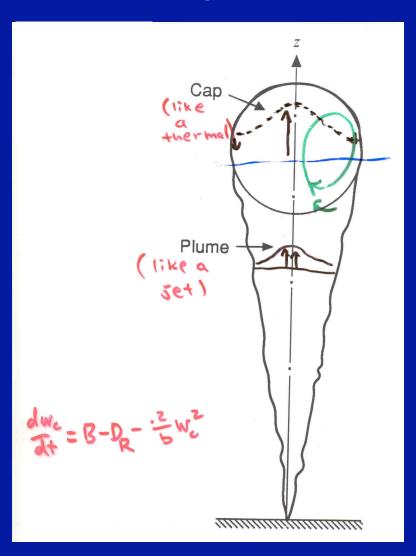
Turbulent jet



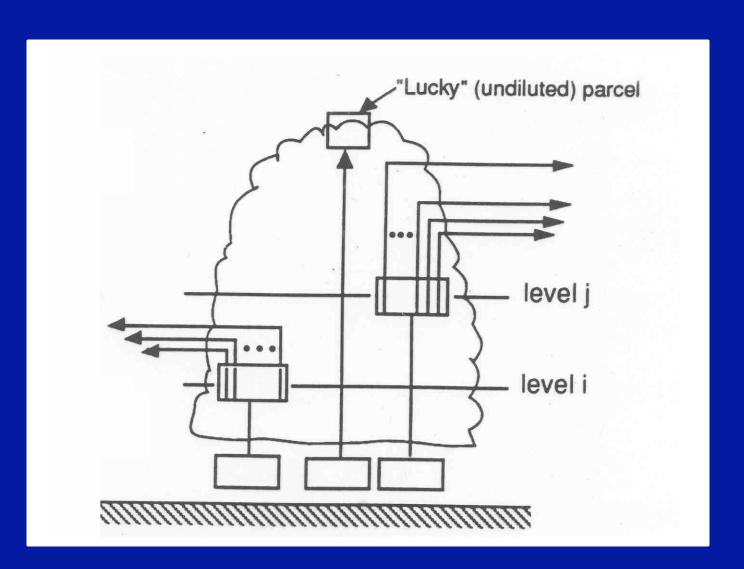
Thermal



Starting plume

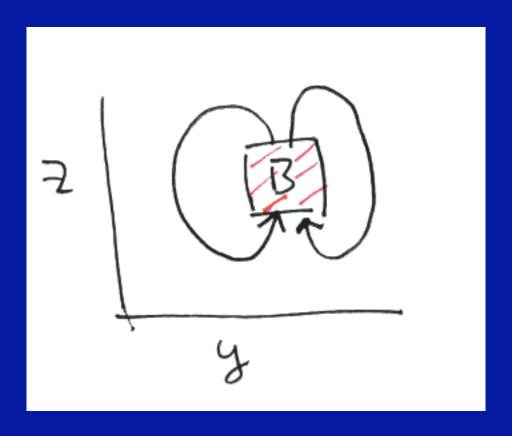


Raymond & Blyth's Model of discontinuous, inhomogeneous entrainment

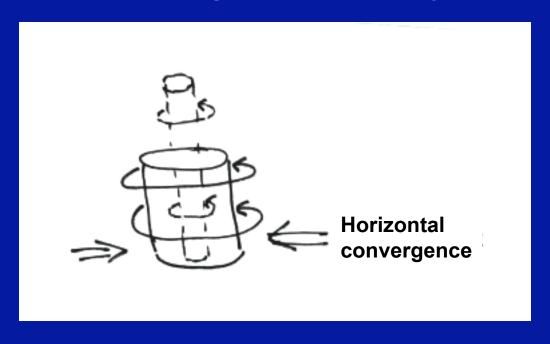


Vorticity equations under Boussinesq conditions

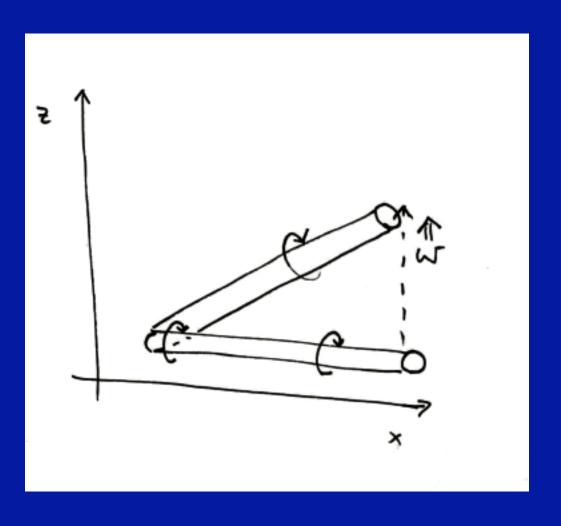
Generation of horizontal vorticity by buoyancy



Stretching of vertical vorticity

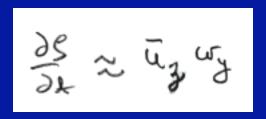


Tilting of horizontal vorticity into the vertical

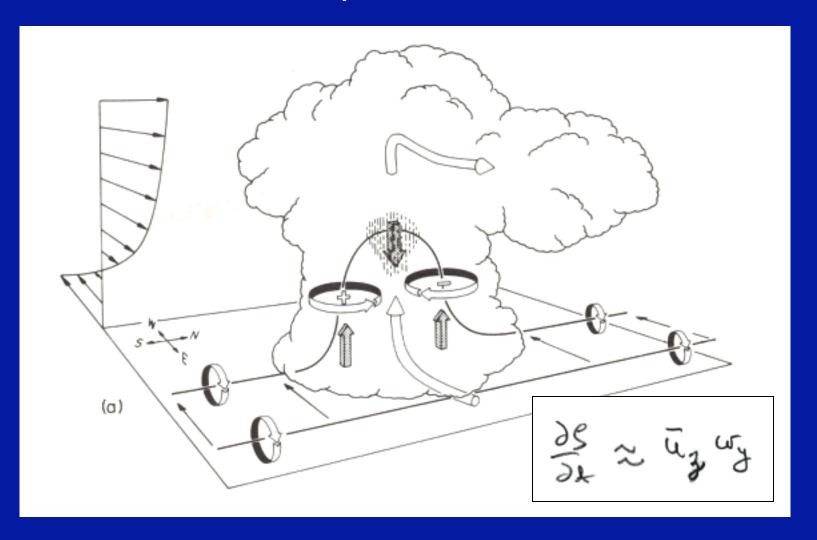


Linearize vertical vorticity equation around the basic state:

At a level in the cloud where the cloud is moving with the basic state velocity:



Linear process leads to vorticity couplet in an convective cloud that develops in a sheared environment



Pressure Perturbation

The pressure perturbation field in a convective cloud is governed by:

$$\nabla^{2} \rho' = F_{g} + F_{0}$$

$$F_{g} = \frac{2}{52} (°_{0}B)$$

$$F_{0} = -\nabla \cdot (°_{0}\pi \cdot \nabla \pi^{2})$$

Pressure Perturbation

Pressure gradient force required by the buoyancy field

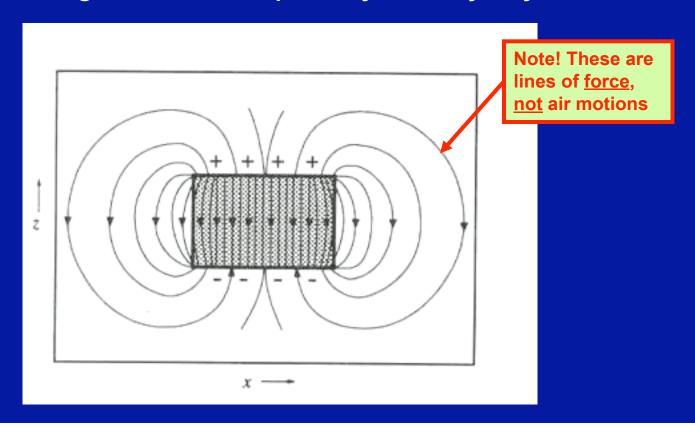


Figure 7.1 Vector field of buoyancy pressure-gradient force for a uniformly buoyant parcel of finite dimensions in the x-z plane. The plus and minus signs indicate the sign of the buoyancy forcing function $-\partial(\rho_o B)/\partial z$ along the top and bottom of the parcel.

Pressure Perturbation

The pressure perturbation field in a convective cloud is governed by:

$$\nabla^{2} \rho' = F_{8} + F_{0}$$

$$F_{8} = \frac{2}{32} (°_{0}B)$$

$$F_{0} = -\nabla \cdot (°_{0}N^{2} \cdot \nabla A^{2})$$

When vortices form in storms, this term requires a low pressure at the center of each vortex. These low pressure centers affect the storm dynamics by producing a pressure field in the storm that is different from that produced by buoyancy alone.