Microphysical-macrophysical interactions
or

Why microphysics matters



Optical properties of liquid clouds

Cloud albedo o = t/(T+7)
1 =3LWPIr,

LWP is macro physical property

- determined largely by meteorological context

r.is a micro physical property

- determined largely by properties of cloud condensation nuclei



Optical properties of liquid clouds

What determines r,?

r,~ (3LWC4np M3

for warm layer clouds N dominates
(Ncan vary from 10-2000 cm™3 while LWCvaries from
0.2-1 g m3)



Cloud top effective radius (CF> 0.8)
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Cloud droplet concentration (CF> 0.8)
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Warm cloud fractional coverage
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Net cloud radiative effect from ERBE
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Microphysics and radiation budget
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What determines N in warm clouds?
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The Twomey Effect

a.k.a first aerosol indirect effect

Increase N
— decrease r,
— increase t (for constant LWP)

— increased albedo

o~ T/(T+7)
1=3LWPIr,
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cloud droplet
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from Breon et al. 2002, Science, 8 10 12 14
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Fig. 1a, b Column-integrated ) Pre-industrial SO4 burden
annual mean sulfate burden f '

(mg(SO4) m~2) in the BOTH x,:z,c-w.,l:l —
experiments: a with pre-indus- SN — P o
trial sulfur emissions; b with
modern (1985) sulfur emissions

b) Modern SO4 burden

Williams et al. (2001)
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Cloud droplet size also impacts
precipitation formation

 Terminal speed of falling droplets increases
strongly with size

* Collection“efficiency”also increases with drop size

 smaller drops tend to follow flow field around

impinging larger ones, whereas larger ones are
collected

* Initial production of precipitation is more efficient

in clouds with larger droplets (lower N, for a given
LWQ)



Summary of drizzle observations in
stratiform warm clouds from field programs
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However, what about feedbacks?

Increase N
—> decreaser,
—> decreasing collision coalescence

—> decrease precipitation
= reduced LWC sink

= increase cloud LWC Albrecht effect

—> inCcrease 1 a.k.a“second aerosol
— increased albedo indirect effect”
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Fig. 4. The dependence of fractional cloudiness,
RH, and SR for different specifications of a
precipitation efficiency factor. The removal of
water by precipitation processes in the parameter-
ized convective elements by the model 1s assumed
to be (di/dz)precip = —a'lc where z is height, [, 1s
the cloud liquid water, and a is the precipitation
efficiency factor in units of per kilometer. A zero
efficiency factor is no drizzle production and a
value of @ = 1 corresponds to a decrease in the
cloud liquid water (for no condensation) by l/e
over a cloud depth of 1 km. Solutions are for the
conditions described in Fig. 3 with a sea-surface
temperature of 26°C and D, of 5 X 10 ®s .



Increasing N in a more sophisticated model
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Clouds containing the ice
phase



Importance of microphysics for orographic precipitation

distribution
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F1G. 2. Calculated trajectories for precipitation particles originating at A and B and growing by deposi-
tion and riming over the Cascade Mountains in a westerly airstream for the following specified concen-
trations (liter™) of ice particles: 1 (solid line), 25 (dashed line), 100 (dotted line). The number at the end
point of each trajectory is the total mass (mg) of precipitation which reaches the ground at that point
originating in a volume of 1 liter at the starting point of the trajectory.
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Polar stratospheric clouds (PSC) and
ozone depletion
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& MICROPHYSICAL PROCESSES
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H,SQO, aerosol nucleation and growth Type-l cloud formation Type-ll cloud Sedimention
formation and denitrification
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Photodissociation Formation of Incorporation of HC! and HNO,, Repartitioning of Catalytic cycle of
reservoir species into type-l particles reservoir species ozone depletion

Cloud particles may contribute to ozone destruction by depleting the stratosphere of nitrogen compounds and
providing sites for heterogeneous reactions. a: Frozen sulfate particles in the stratosphere seed the
heterogeneous nucleation of nitric acid particles. When the temperature drops to about 188 K, water-ice
particles form. These particles can grow quite large and, through gravitational sedimentation, fall from the
stratosphere. b: Chlorofluorocarbons photodissociate to form highly reactive chlorine. Chlorine can react with
nitrogen compounds and methane to form less reactive “‘reservoir species.”” Sedimentation of the cloud
particles denitrifies the polar stratosphere, eliminating this sink for reactive chlorine. Reactions of reservoir
species reintroduce reactive chlorine, which at high levels enters a nonlinear catalytic cycle that destroys

ozone. Figure 5
Hamill and Toon 1991






Indirect effect ratio R,
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Relative strength of the Albrecht effect compared with Twomey
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Albrecht effect can enhance or cancel the

Twomey effect
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