Microphysical-macrophysical interactions

or

Why microphysics matters
Optical properties of liquid clouds

Cloud albedo $\alpha \approx \tau / (\tau + 7)$

$\tau = 3 \text{LWP} / r_e$

LWP is *macro* physical property
- determined largely by meteorological context

r_e is a *micro* physical property
- determined largely by properties of cloud condensation nuclei
Optical properties of liquid clouds

What determines r_e?

$$r_e \approx \left(\frac{3LWC}{4\pi \rho N} \right)^{1/3}$$

for warm layer clouds N dominates
(N can vary from 10-2000 cm$^{-3}$ while LWC varies from 0.2-1 g m$^{-3}$)
Warm cloud fractional coverage
Net cloud radiative effect from ERBE
Microphysics and radiation budget

Error in TOA net radiation in assuming no microphysical variability (constant N)
What determines N in warm clouds?

Aerosol concentration ($r > 0.1$ micron) [cm^{-3}]

Cloud droplet concentration [cm^{-3}]
The Twomey Effect
a.k.a first aerosol indirect effect

Increase N

\Rightarrow decrease r_e

\Rightarrow increase τ (for constant LWP)

\Rightarrow increased albedo

$$\alpha \approx \frac{\tau}{(\tau+7)}$$

$$\tau = \frac{3LWP}{r_e}$$
Aerosol loading and cloud droplet effective radius

Fig. 1a, b Column-integrated annual mean sulfate burden (mg(SO$_4$) m$^{-2}$) in the BOTH experiments: a with pre-industrial sulfur emissions; b with modern (1985) sulfur emissions
Cloud droplet size also impacts precipitation formation

• Terminal speed of falling droplets increases strongly with size
• Collection “efficiency” also increases with drop size
 • smaller drops tend to follow flow field around impinging larger ones, whereas larger ones are collected
• Initial production of precipitation is more efficient in clouds with larger droplets (lower N, for a given LWC)
Summary of drizzle observations in stratiform warm clouds from field programs
However, what about feedbacks?

Increase N

\[\Rightarrow \text{decrease } r_e \]
\[\Rightarrow \text{decreasing collision coalescence} \]
\[\Rightarrow \text{decrease precipitation} \]
\[\Rightarrow \text{reduced LWC sink} \]
\[\Rightarrow \text{increase cloud LWC} \]
\[\Rightarrow \text{increase } \tau \]
\[\Rightarrow \text{increased albedo} \]

Albrecht effect

a.k.a “second aerosol indirect effect”
Increase precip. ⇒ decrease cloud cover

Albrecht 1989

Fig. 4. The dependence of fractional cloudiness, RH, and SR for different specifications of a precipitation efficiency factor. The removal of water by precipitation processes in the parameterized convective elements by the model is assumed to be \((dl_c/dz)_{\text{PRECI}} = -a l_c\) where \(z\) is height, \(l_c\) is the cloud liquid water, and \(a\) is the precipitation efficiency factor in units of per kilometer. A zero efficiency factor is no drizzle production and a value of \(a = 1\) corresponds to a decrease in the cloud liquid water (for no condensation) by \(1/e\) over a cloud depth of 1 km. Solutions are for the conditions described in Fig. 3 with a sea-surface temperature of 26°C and \(D_o\) of \(5 \times 10^{-6} \text{ s}^{-1}\).
Increasing N in a more sophisticated model

Reduced precip. decreases LWP!sometimes

Ackerman et al. (2004)
Clouds containing the ice phase
Importance of microphysics for orographic precipitation distribution

Fig. 2. Calculated trajectories for precipitation particles originating at A and B and growing by deposition and riming over the Cascade Mountains in a westerly airstream for the following specified concentrations (liter$^{-1}$) of ice particles: 1 (solid line), 25 (dashed line), 100 (dotted line). The number at the end point of each trajectory is the total mass (mg) of precipitation which reaches the ground at that point originating in a volume of 1 liter at the starting point of the trajectory.
Homogeneous freezing sensitivity to aerosol concentration
Polar stratospheric clouds (PSC) and ozone depletion
Cloud particles may contribute to ozone destruction by depleting the stratosphere of nitrogen compounds and providing sites for heterogeneous reactions. a: Frozen sulfate particles in the stratosphere seed the heterogeneous nucleation of nitric acid particles. When the temperature drops to about 188 K, water-ice particles form. These particles can grow quite large and, through gravitational sedimentation, fall from the stratosphere. b: Chlorofluorocarbons photodissociate to form highly reactive chlorine. Chlorine can react with nitrogen compounds and methane to form less reactive "reservoir species." Sedimentation of the cloud particles denitrifies the polar stratosphere, eliminating this sink for reactive chlorine. Reactions of reservoir species reintroduce reactive chlorine, which at high levels enters a nonlinear catalytic cycle that destroys ozone. Figure 5
Indirect effect ratio R_{IE}

$$\frac{d \ln \tau}{d \ln N_d} = \left(\frac{\partial \ln \tau}{\partial \ln N_d} \right)_{LWP} + \left(\frac{\partial \ln \tau}{\partial \ln LWP} \right) N_d \left(\frac{\partial \ln LWP}{\partial \ln N_d} \right)_{ext}$$

For adiabatic cloud layers, $\tau \propto N_d^{1/3} LWP^{5/6}$

$$\frac{d \ln \tau}{d \ln N_d} = \frac{1}{3} + \frac{5}{6} \left(\frac{\partial \ln LWP}{\partial \ln N_d} \right)_{ext}$$

$$R_{IE} = \frac{5}{2} \left(\frac{\partial \ln LWP}{\partial \ln N_d} \right)_{ext}$$

Relative strength of the Albrecht effect compared with Twomey
PRECIPITATION MOISTENING

Short timescales

- Reduced MBL drying/warming through reduced surface precipitation
- Increase N_d, reduce P

ENTRAINMENT DRYING

- Increased MBL drying/warming through stronger entrainment
- z_{CB} increases, h decreases

ENTRAINMENT DEEPENING

Long timescales

- Increased MBL depth through stronger entrainment
- z_i increases, h increases
Albrecht effect can enhance or cancel the Twomey effect.