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Representation of a nonspherical ice particle by a collection of
independent spheres for scattering and absorption of radiation

Thomas C. Grenfell and Stephen G. Warren
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Abstract. The use of “equivalent” spheres to represent the scattering and absorption
properties of nonspherical particles has been unsatisfactory in the past because the sphere of
equal volume has too little surface area and thus too little scattering, whereas the sphere of
equal area has too much volume giving too much absorption. Their asymmetry factors are
also too large. These problems can largely be avoided if the real cloud of nonspherical
particles is represented by a model cloud of spheres where the model cloud contains the same
total surface area as well as the same total volume. Each nonspherical particle is then
represented not by just one sphere but rather by a collection of independent spheres that has
the same volume-to-surface-area (V/A) ratio as the nonspherical particle. To demonstrate
the broad utility of this approach, we show results for ice, whose absorption coefficient varies
with wavelength by 8 orders of magnitude. Randomly oriented infinitely long circular
cylinders are used as a test case because an exact solution is available for all size parameters.
The extinction efficiency and single-scattering coalbedo are closely approximated by the
values for equal-V/A spheres across the ultraviolet, visible, and infrared from 0.2 to 50 um
wavelength; the asymmetry factor is matched somewhat less well. Errors in hemispheric
reflectance, absorptance, and transmittance are calculated for horizontally homogeneous
clouds which cover the range of crystal sizes and optical depths from polar stratospheric
clouds through cirrus clouds to surface snow. The errors are less than 0.05 at all wavelengths

over most of this space.

1. Introduction

Because of the importance of ice clouds and surface snow
for the Earth’s climate, it is desirable to find efficient yet
accurate ways to represent the scattering and absorption
properties of ‘ice crystals in radiation models and climate
models. Models commonly use “equivalent spheres” to
represent nonspherical particles because of their ease of use
and the saving in computation time. This saving can be
several orders of magnitude.

A variety of crystal shapes is observed in natural ice clouds
and snow packs. Figure 1 shows some examples of "diamond
dust” atmospheric ice crystals collected as they fell over the
Antarctic Ice Sheet. In some cases, length-to-width ratios can
be very large (Figure 1b).

It is popular to classify an ice crystal by either its volume V
or its surface area A. However, both the sphere of equal
volume, whose radius is ry, and the sphere of equal surface
area, with radius r4, have single-scattering albedos (o)
which are too small and asymmetry factors (g) which are too
large. This is also true if equal projected area is used instead
of equal surface area to define the equal-area sphere.
Radiative transfer predictions using either equal-volume
spheres or equal-area spheres will therefore be in error.
Scattering efficiencies and phase functions have been
calculated for hexagonal columns and plates of ice and
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compared to equal-area or equal-volume spheres by Takano
and Liou [1989] and Chylek and Videen [1994]. The most
thorough criticism of equivalent spheres was presented by
Liou and Takano [1994], who compared phase functions,
asymmetry factors, effects on remote sensing, spectral and
broadband albedos, and cloud radiative forcing by cirrus
clouds, concluding in all instances that the use of equivalent
spheres in models leads to- large errors. In spite of their
inadequacy shown in those studies, prescriptions of
equivalent spheres as those of equal surface area (or projected
area), or equal volume, are still commonly used. For
example, Ebert and Curry [1992] used equal-area spheres in
their parameterization of ice cloud optical properties for
climate models.

Some attempts [e.g., Sun and Shine, 1995] have been made
to "adjust” the results of Mie calculations for spheres to match
those of nonspherical particles. Schmidt et al. [1995] pro-
posed a "composite” sphere to which is assigned a phase
function appropriate to hexagonal crystals. Such ad hoc
adjustments can be made for specific applications, but they
fail to work in general. We seek instead a general method
that can work for all shapes, all sizes, all wavelengths, all
chemical compositions, and all optical depths.

We investigate here the possibility that a third choice of
equivalent sphere can more accurately mimic the single-
scattering properties and, more importantly, the multiple-
scattering properties of nonspherical particles in the
ultraviolet, visible, and infrared spectral regions. In our view,
the reason for the failure of equivalent spheres to adequately
represent nonspherical particles in the studies cited above is
the requirement that the number of spheres ng must equal the
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Figure 1. Photographs of atmospheric hexagonal ice crystals ("diamond dust") collected at Amundsen-Scott
South Pole Station as they fell during the austral winter of 1992 are shown in Figure la. The long needles
shown in Figure 1b, called Shimizu crystals [Shimizu, 1963], have an aspect ratio of approximately 50:1.

number of nonspherical particles n. We show that a sig-
nificant benefit can be obtained by relaxing that requirement.

2. Approach

To model the radiative properties of an ice particle in a
cloud or a snowpack, we represent the single particle by a
collection of monodisperse spheres which contains the same
total surface area as the original particle as well as the same
total volume of ice. These spheres, whose radius is ry,, then
have the same volume-to-surface ratio as the nonspherical
particle, but in order to conserve the total mass there is more
than one sphere for each nonspherical particle. For radiative
transfer there is no compelling reason why the number of
particles in the model cloud should be the same as the number
in the real cloud. In the case of snow, where the particles are
in contact, there is even less reason, as it is often arbitrary to
say where one snow grain ends and another begins. We
therefore have abandoned the conventional requirement that
ng=n.

The arguments in favor of taking account of the volume-to-
surface ratio have a long history. In arguing for the use of
equal-V/A spheres to represent snow particles, Wiscombe and
Warren [1980] and Warren [1982] cited Pollack and Cuzzi’s
[1980] work on aerosol particles. Mitchell and Arnott [1994]
pointed out that the importance of the V/A ratio had been

mentioned even earlier by Bryant and Latimer [1969]. The
representation of a snow grain by a collection of equal-V/A
spheres was further discussed by Grenfell et al. [1994].
Wiscombe and Warren’s [1980] recommendation of equal-
V/A spheres was adopted in the snow-optics community,
where some empirical evidence for it was found in attempts to
match measured and calculated reflectance [Grenfell et al.,
1981; Dozier, 1989]. In the context of cirrus clouds, equal-
V/A spheres were recommended by Foot [1988], who also
cited Pollack and Cuzzi [1980] for inspiration, but these
smaller spheres have been slower to gain acceptance in the
cloud-optics community than was the case for snow.

There are reasons to expect equal-V/A spheres to do better
than the equal-area spheres or equal-volume spheres at
mimicking the radiative properties of real clouds. It was
mentioned above that equal-area spheres and equal-volume

_spheres have @y too small and g too large. Both errors would

be reduced by using equal-V/A spheres because ‘they are
smaller, as smaller spheres have larger @, and smaller g. The
nonspherical ice crystals sampled in clouds during the FIRE-
cirrus experiment in Wisconsin were converted to equal-
volume or equal-area spheres, which turned out to be too
large to explain the radiation measurements [Platt et al.,
1989; Wielicki et al., 1990; Ackerman et al., 1990; Heymsfield
et al., 1990; Sassen et al., 1990].

Equal-V/A spheres might reduce the discrepancies seen in
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Figure 2. Hexagonal columns represented as spheres of equal volume, equal surface area, and equal V/A. In
Figure 2a, the crystal dimensions are 20 x 50 um, and in Figure 2b they are 10 x 800 pm.

FIRE. A step in this direction was taken by Kinne et al.
[1990, Figure 2], who modeled the individual elements of a
cluster as separate spheres. A prescription for effective radius
proposed by Fu [1996] and Fu et al. [1998] makes use of the
equal-V/A principle. Mitchell and Arnott [1994] pointed out
that the single-scattering albedo was too small for equal-
projected-area spheres and argued for use of a measure of
volume-to-surface ratio. The idea was further developed by
Mitchiell et al. [1996], who defined the “effective distance” d,
as the representative distance a photon travels through ice
between opportunities for reflection or refraction and then
calculated d, for different shapes of ice crystals. Such
calculations have also been made by Wyser and Yang (1998).
Recently, McFarquhar and Heymsfield [1998] have reviewed
these and the other specifications that have been used for
effective radius for ice clouds. Among them, the methods of
Fu and Mitchell and their coworkers are the closest to what
we propose but are more complicated. The prescription
pursued in this paper, if successful, offers in addition the
advantage of simplicity.

3. Formulation

We wish to represent a particle of voluime V and surface
area A by a collection of spheres. Since the ratio V/A for a
sphere is equal to 7/3, we obtain the radius of the equal-V/A
sphere from the relation

rva =3K (l)

A

The number of equivalent spheres n; relative to the number of
nonspherical particles n is given by

ng 3V
= @
n Adrr VA

For hexagonal columns, with dimensions a and c, as shown
in Figure 2, the spherical radii for the three different

specifications are given by
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The same result is obtained if projected area, P, rather than
total surface area, A, is used to describe the particles because
their ratio is constant (A = 4P) for all convex shapes when
randomly oriented (Vouk, 1948). If equal-V/A spheres are
used, the value of n, is then determined from (2) using

2
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In general, r4 > ry > rys. For example, short hexagonal
columns of length 50 um and width 20 wm, shown in Figure
2a, give rqy = 17 pm, ry = 15 pm, ry4 = 11 um, and ng/n =
2.3. In the case of the very long narrow columns in Figure 2b,
a single column is represented by 46 small spheres in the
equal-V/A representation.

For the computation of ry4 to represent hollow crystals, V
is just the volume of ice alone, not including the air pockets.
The appropriate area is probably the total surface area
including both interior and exterior walls, unless they are

‘perfectly parallel.  However, hollow crystals are not
considered in this paper.

In this initial study, the nonspherical shape we use is not a
hexagonal column nor a hexagonal plate. but rather an
infinitely long circular cylinder. The reason for using infinite
circular cylinders in this initial demonstration project is that
an exact solution is available. This allows us to determine the
errors in the radiation fields, due to representing the cylinders
by spheres, for any size parameter and any value of the
complex index of refraction. For infinite circular cylinders,
with radius rcy, the radii for the three different specifications
of equivalent spheres are

Py =co B =oo. ©)

ryva = 1.5 rcyl

4. Single Scattering

The scattering properties for spheres were calculated from
Mie theory [Wiscombe, 1979; 1980] and for cylinders from a
corresponding solution of Maxwell’s equations [Kerker,
1969; Bohren and Huffman, 1983; Haracz et al., 1985] which
yield the extinction efficiency Qeyr, the single scattering
albedo @,, and the phase function p(@). The complex re-
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fractive index of ice was obtained principally from measure-
ments by Grenfell and Perovich [1981] for the wavelength
range 0.4 to 1.4 pm and by Schaaf and Williams [1973] for
2.8 to 33 um, as reviewed by Warren [1984]. Warren’s
[1984] compilation is used here, with updates from Perovich
and Govoni [1991] in the near ultraviolet and from Kou et al.
[1993] from 1.4 to 2.8 um. (The updated compilation is
available by anonymous FIP to climate.gsfc.nasa.gov in the
file /pub/wiscombe/Refrac_Index/ICE.) The calculations for
randomly oriented infinite cylinders, using the method of
Haracz et al. [1985], were carried out using a slightly
modified version of computer code provided to us by B.T.N.
Evans (Department of National Defense, Defense Research
Establishment Ottawa, Canada, e-mail bevans@airsrv.abrdr.
dreo.dnd.ca).

To average over the resonant peaks in the phase functions,
the single scattering computations were performed for a
lognormal distribution of particle sizes with a specified
geometric mean radius rg and a fixed geometric standard
deviation g, = 1.6. This value of g corresponds to that
typically obtained for the size distributions (when converted
to equal-V/A spheres) which we measured in photographs of
falling ice crystals collected on 100 days in the winter of 1992
at the South Pole, two of which are shown in Figure 1. The
resulting size distributions for the infinite cylinders are shown
in Figure 3. Calculations were done with mean cylinder radii
of rg = 1, 2, 5, 10; 20, 50, 100, 200, and 500 pm. For
radiative purposes the most useful single number to
characterize a size distribution is the area-weighted mean
radius, or "effective radius," reff [Hansen and Travis, 1974]:

-[r3n (r)dr

re[f =W. (6)
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Figure 3. Lognormal distributions for the radii of infinite circular cylinders used in the modeling, where N is
the integrated number density between zero and r. The geometric standard deviation o is 1.6 for all cases.

The geometric mean radius is rg.
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Figure 4. Extinction efficiency (Qeys), single-scattering coalbedo (1-@,), and asymmetry parameter (g)
versus wavelength from 0.2 to 50 um for randomly oriented infinite circular cylinders (solid lines) and equal-
V/A spheres (dashed lines). The geometric mean radii for the cylinder size distributions are indicated at the

top of each column.

For a lognormal distribution, r,fis given by

Toff =1 exp[2.5 (In O, )2] . )
For gy = 1.6, we obtain reg = 1.737 rg. In the discussions
throughout the rest of the paper, size distributions are
identified by the value of rg specified.

The phase function was computed at an angular sampling
density selected so that 20 points were used between zero
scattering angle and the first minimum in the diffraction
pattern.  Values of the first four moments of the phase

function were then calculated numerically to be used in the -

radiative transfer model.

Examples of the single-scattering results for randomly
oriented cylinders are shown in Figure 4 for cylinder radii (rg)
of 1, 5, 10, 20, and 100 um for wavelengths (4) from 0.2 um
to 50 pum. This covers essentially the entire solar shortwave
and terrestrial longwave spectral regions. The extinction
efficiency and single-scattering coalbedo of the cylinders are
closely approximated by the values for spheres with the same
V/A ratio. The asymmetry factor is too large in some spectral
regions and too small in others depending on cylinder radius,
but the effects of these errors on irradiances and heating rates
are usually small, as shown in section 5.

Phase functions for representative cases of 5 um and 20
um cylinders are shown in Figure 5. Although the asymmetry
factors are in close agreement, the forward peak of the phase
function for spheres is always stronger than that for the
cylinders. This is because the forward scattering diffraction
maximum for the spheres is proportional to the fourth power
of the size parameter (x = 27r/A), while for the infinite
cylinders, it is proportional to x*. The reduced side scattering
of spheres (& = 90°) relative to that of nonspherical particles
is well known from other studies [Liow, 1973, Figure 1;
Wendling et al., 1979, Figure 8; Mishchenko et al., 1996,
Figure 1]. We shall see, however, that these differences in the
phase functions lead to little error in radiation fluxes.

5. Multiple Scattering

We now compare the bulk radiative properties of a
horizontally homogeneous cloud of randomly oriented infinite
circular cylinders to those of a cloud of equal-V/A spheres.
Calculations of hemispherical reflectance, absorptance, and
transmittance were carried out for wavelengths 0.2-50 pm
using a four-stream delta-M discrete-ordinates method
[Grenfell, 1991]. To isolate the inherent properties of the
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Figure 5. Phase functions p( @) for cylinders (solid lines) with mean radii of 5 and 20 um at wavelengths of
0.5 and 1.6 um (solid lines) compared to those of equal-V/A spheres (dashed lines). The corresponding
asymmetry factors are given in each frame. The arrows pointing to the phase-function axis indicate the values

of p(@) at O@=0°.

cloud itself, the model consisted of a single homogeneous
cloud layer over a black surface at 0°K illuminated from
above by a plane wave at a zenith angle of 60°. In the thermal
infrared the absorptance can be equated to the directional
emissivity at an emission angle of 60°. It is useful to express
the optical properties of a cloud as functions of the ice water
path IWP), defined as the total mass per unit area, integrated
vertically through the cloud. The relation of IWP to optical
depth 7 is given by formulas similar to that derived by
Stephens [1978] for liquid clouds. For a monodispersion, the
differential of optical depth dzis given by

At = Qo () A, (r)n(r,z)dz,, 8
where Ap(r) is the angular averaged projected area of a single
particle (sphere or cylinder) of radius r and n(rz) is the
number density of particles. The mass of ice per unit volume
of the cloud (the ice water content IWC) is given by

IWC(Z) = V(l") n(r’ Z) Pice» (9)

where V(r) is the volume per particle and gjc,, the density of
pure ice, is 916 kg/m®>. Combining (9) and (8) gives

d’Z' — Ap(r) Qext(r)
V(r) Pice

IWC(z) dz . (10)

For a monodispersion, integrating over z gives
Ap(1) Qe (1)
T=—"
V(r ) pice
For a cloud of spheres A,/V = 3/(4r), so
3 IWP Qext (r sph )

4 Tsph Pice
For a cloud of randomly oriented cylinders we have

(11

Tsph = (12)
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From Equation (1) we find that rgpp = 1.5 Teyl, so for a given
IWP and Q,,; we have

Toph _ LextUspn) (15)
Tot Qo (Tey)
Figure 4 shows that Qexi(rcy1) = QexdTsph), sO
Tsph =Tyl - (16)
Equation (15) was derived for a monodispersion. It is

therefore valid for all components of a polydispersion and
therefore must be valid for the polydispersion itself.

The inherent optical properties of the cloud are thus
specified by IWP, r¢y, and the single scattering quantities.
Our calculations were carried out for the nine size
distributions of cylinder radii shown in Figure 3 and for IWP
values ranging from 0.4 to 200,000 g m”. These ranges are
sufficient to cover the range of crystal sizes and ice water
paths from polar stratospheric clouds through surface
snowpacks.  Approximate optical depths implied by all
combinations of IWP and r¢y; are shown in Figure 6. The
optical depth depends on wavelength, because Q.y; depends
on wavelength, so for Figure 6, we have simply used the
geometric optics limit, Qgy = 2, to plot the "geometric-optics”
optical depth 7.

Representative results for reflectance, absorptance, and
transmittance, together with the differences between the exact
solution and the equivalent-sphere results, are shown in
.Figures 7-9 for the particular wavelengths 0.5, 1.6, 3.73, 11,
and 24.6 um. Reflectance is defined as the ratio of upwelling
irradiance above the cloud to the incident irradiance.

31,703

Absorptance and transmittance are ratios of absorbed and
transmitted irradiance to incident irradiance.

The results shown in Figures 7-9 include a very large range
in optical depth, from approximately 102 to 2 x 10°, implying
reflectance of essentially zero for the smallest optical depths,
up to reflectance saturation and zero transmittance for the
largest optical depths. The errors in all three quantities are
less than 0.02 over much of the three-dimensional space of 4,
reyl, and TWP and less than 0.05 over most of the space. The
maximum errors are 0.07 for reflectance, 0.09 for
absorptance, and 0.07 for transmittance; these largest errors
all occur at A= 3.73 pm and only at particular values of
radius and IWP. In some spectral regions a substantial error
in single scattering leads to negligible error in multiple-
scattering results. For example, Figure 4 shows substantial
error in g at A = 11 um for cylinder radii of 20 pm and 100
Mm (geyr = 0.88; gspn = 0.93). However, Figures 7-9 show
negligible error in reflectance, absorptance, or transmittance
for these particle sizes at this wavelength. That is because
most incident photons are absorbed at this wavelength, so the
phase function is of little importance.

6. Discussion
6.1. Broad Size Distributions

To test how well the method works for broader size
distributions we combined the results from groups of results
presented above. The first group was a combination of results
for the 5, 10, and 20 um lognormal distributions shown in
Figure 3. The combination weights n; of the three categories
were taken to be 32, 16, and 1, respectively, giving the same
effective radius as that of the 10 wm narrow distribution in
Figure 3. The second case combined the results from 20, 50,
and 100 um distributions, using n; values of 42, 13, and 1 for
the three sizes, giving the same effective radius as that of the
50 um narrow distribution. Comparison of the combined
results (Figure 10) with those presented in Figure 4 shows
even better agreement between equivalent spheres and infinite
cylinders for the broad size distributions than for the narrow
ones. This is due to incoherence among the errors for the
different component distributions, which average out to some
degree when they are combined.

6.2. Application to Realistic Ice-Crystal Shapes

We have shown that equal-V/A spheres can be used to
compute quite accurate values of angular-averaged
reflectance, transmittance, and absorptance for a multiple-
scattering medium. The ability of spheres to represent
radiative properties of circular cylinders encourages us to
believe that they may do comparably well at mimicking
multiple scattering by hexagonal columns and plates.
Comparisons such as those shown in this paper will need to
be done over the full range of ry,, IWP, and A we have used
but with the additional variable of axial ratio a/c. The phase
function (Figure 5) is poorly represented by spheres, so
spheres cannot be expected to produce accurate radiances at
specific angles, particularly if halos are prominent. We are
thus promoting the use of spheres for fluxes rather than
radiances.

We feel that the representation using equal-V/A spheres
may also be suitable for hollow crystals, where the value of V
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to represent ice cylinders, as functions of ice water path and cylinder radius, calculated at the five different
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spheres to represent ice cylinders, as functions of ice water path and cylinder radius, calculated at the five

different wavelengths (4) specified in the each of the panels.
absorptance minus the approximate absorptance using spheres.

The error plotted is the true cylinder
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Figure 10. Spectral extinction efficiency (Qexs), single-scattering coalbedo (1-@), and asymmetry factor g
for broad size distributions of cylinders, and for the corresponding equal-V/A spheres. A broad distribution
is made by combining the values for the narrow distributions with mean cylinder radii 5, 10, and 20 um (left
panels), or 20, 50, and 100 pm (right panels), in ratios that cause the effective radius of the broad distribution
to be the same as that of the 10 pm or 50 pm narrow distribution. Results for irifinite cylinders are given by

the solid lines and for spheres by the dashed lines.

is the volume occupied by ice and A is the total area of both
internal and external surfaces. In this and other cases where
crystals contain concavities, the projected area is not related
to total surface area by a simple multiplier. Consequently, we
prefer to use the actual surface area in our prescription for

rya.

6.3. Application to Remote Sensing

Ice crystals in the near-surface atmosphere at the South
Pole were collected on gridded slides daily for three months
in 1992; two examples are shown in Figure 1. Dimensions of
all crystals on each photograph were measured, and the radius
of the equivalent sphere computed for each assemblage of

crystals, using three different prescriptions (rg, ry, rya)-
Effective radii were also inferred for the clouds by a ground-
based remote sensing method, using emitted infrared spectral
radiances measured at nearly the same time, by Mahesh et al.
(Ground-based infrared remote sensing of cloud properties
over the Antarctic Plateau, II, submitted to Journal of Applied
Meteorology, 1999). Their Figure 15 shows that the remotely
sensed radii were much smaller than r4 and ry but agreed
with rij4.

7. Conclusions

The representation of infinite circular cylinders of ice by
equal-V/A spheres works well for all particle sizes, all
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wavelengths, and all optical depths. The resulting errors in
irradiances and heating rates are smaller than the typical
observational uncertainties in measurements of these
quantities for natural clouds.

The success of equal-V/A spheres in representing
nonspherical particles is closely related to the success found
earlier by Hansen and Travis [1974] in representing a size
distribution of any shape and width by a monodispersion with
the single radius r.f; because the V/A ratio of the sphere of
radius r,f is the same as the ratio of the total volume of the
entire size distribution to the total surface area.

The enthusiasm with which the snow-optics community
quickly adopted the equal-V/A principle is probably related to
the difficulty of defining where one snow grain ends and
another begins in a snowpack, since the grains are in contact
and often well bonded to each other. Although individual
grains cannot be unambiguously identified, the total volume
and total surface area in a snowpack are well defined, and
methods have been developed to measure them [e.g., Shi et
al., 1993]. Representing the snowpack by equal-V/A spheres
therefore allows us to define the "grain size" without defining
"grain."

Effective radii inferred in remote sensing measurements of
ice clouds probably correspond to ry rather than to r4 or ry.
This may explain why particle dimensions measured in ice
clouds and converted to ry or ry often exceed the particle
radii inferred from remote sensing. To characterize the "size"
of an ice crystal by a single number, as is often done, the most
relevant dimension for radiative properties is not the length
but rather the shortest dimension (i.e., the width of a column,
the thickness of a plate, or the width of a hollow crystal’s
wall), since that corresponds most closely to ryy4.

It has been common practice, in publications that put
forward accurate computations of scattering by nonspherical
particles [e.g., Liou and Takano, 1994; Chylek and Videen,
1994], to compare their results to scattering by equal-volume
or equal-area spheres. We argue that in the future all such
comparisons should also (or instead) be made to equal-V/A
spheres, as Fu and his coworkers have done. Otherwise
spheres are not given the opportunity to show how well they
can perform.
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