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[1] The ability of an assembly of spheres to represent scattering and absorption by a
nonspherical ice crystal of the same volume-to-area (V/A) ratio was previously evaluated
for convex shapes (circular cylinders and hexagonal prisms). Here we extend the
comparison to indented and hollow prisms, which are common in ice clouds. In the
equivalent-sphere representation, the crystal mass and surface area are both conserved.
Internal surfaces as well as external surfaces contribute to the total surface area; in the model
representation both become external surfaces of spheres. The optical depth t of the
model cloud is thus greater than that of the real cloud by the ratio A/4P, where A is the total
area of the nonspherical particle and P is the orientation-averaged projected area. This ratio,
which we call ‘‘fluffiness,’’ is unity for convex shapes but may exceed 2 for clusters of
hollow bullets. In effect, the scattering at interior surfaces of a hollow crystal becomes
classified as multiple scattering in the model of ice spheres. Therefore, rather than directly
comparing the asymmetry factor (g) and single-scattering albedo (wo) of the hollow crystal to
those of the equal-V/A sphere, it is more appropriate to compare the product t(1 � g)wo,
because this quantity largely determines the bulk radiative properties of the cloud. Errors
in albedo, absorptance, and transmittance of ice clouds, caused by the equal-V/A
representation, are presented for a range of aspect ratios, indentation depths, and ice-water
paths at visible and near-infrared wavelengths.
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1. Introduction

[2] Models to calculate absorption and scattering of light
by ice crystals in clouds and snow commonly represent
the crystals by ‘‘equivalent spheres.’’ This approach typi-
cally reduces the computation time for single-scattering
quantities by many orders of magnitude compared with
exact calculations. Since a great variety of particle shapes
occur in ice clouds, in many cases the exact shapes
are unknown, so to represent these clouds in climate
models and in remote-sensing retrievals it is appropriate
to use simpler parameterizations.
[3] Three choices of equivalent spheres have been used

[Grenfell and Warren, 1999, Figure 2]. A nonspherical
particle may be represented by a sphere of the same volume,

V, or by a sphere of the same surface area, A, or by a
collection of spheres with the same volume-to-surface-area
ratio, V/A. The equal-volume and equal-area spheres have
been shown in many studies [e.g., Mishchenko et al., 2002]
to cause large errors. We are instead focusing on the equal-
V/A representation, and evaluating its accuracy. The method
of equal-V/A spheres is a straightforward technique in which
the model cloud conserves both the total mass of ice and the
total surface area of particles by adjusting the effective
number of particles. Both constraints are important because
for weakly absorbing particles, the absorption is propor-
tional to the volume, but the scattering is proportional to the
surface area. Matching the number of particles is less
important for calculation of the radiation fluxes. In fact, a
particular advantage of the equal-V/A representation is that
it can be applied unambiguously to a terrestrial snowpack,
for example, where the identity of the individual snow
particles is in general not well defined.
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[4] In the first paper of this series, Grenfell and Warren
[1999] (hereinafter GW99) examined the accuracy of an
equal-V/A prescription for randomly oriented infinitely long
circular cylinders of ice, surveying a wavelength domain 0.2
to 50 mm over a broad range of cylinder radii and ice-water
paths. Subsequently, Neshyba et al. [2003] (hereinafter
NGW03) extended the study to solid hexagonal ice crystals.
In the case of circular cylinders, the equal-V/A sphere
prescription did an excellent job of representing the angu-
larly averaged single-scattering and multiple-scattering
properties across a broad domain of wavelengths, crystal
radii, and cloud thicknesses. The errors in hemispheric
reflectance and absorptance rarely exceeded 0.05. For
hexagonal columns and plates the errors were likewise
small; for equidimensional crystals they were somewhat
larger, particularly at visible wavelengths for moderate
optical depths.
[5] The application we envision for this parameterization

is computation of fluxes for energy budgets. We therefore
display the radiative properties of ice clouds only as
irradiances. We do not expect the method to be valid for
radiances, let alone polarized radiances. However, as pointed
out in our first paper [Grenfell and Warren, 1999], the
concept of equal-V/A spheres is a convenient way to
describe the ‘‘size’’ of an ice crystal by a single number,
which can be useful in remote sensing as well.
[6] The error survey in this paper builds on an observa-

tion made by NGW03, that the asymmetry parameters, g, of
equal-V/A spheres exhibit their greatest departures from
correct values for an aspect ratio of 1.0 (equidimensional
crystals). Using the subscripts s for sphere and x for crystal,
gs � gx � 0.1 for equidimensional hexagonal prisms with

equal-V/A radii of 50 mm at a wavelength of 0.5 mm
(NGW03, their Figure 7). This ‘‘equidimensional aberra-
tion’’ decreases for both larger and smaller aspect ratios
(columns and plates respectively). For the example just
cited, gs � gx switches from positive to negative for
hexagonal prisms with aspect ratios of approximately 1/10
(plates) and 10 (columns). Because the equidimensional
aberration was observed in the geometric optics limit, it was
conjectured by NGW03 that it can be understood in a ray-
tracing sense as the result of the relative importance of
corner reflectors and parallel faces.
[7] Although solid hexagonal crystals do occur in real ice

clouds, it is more common for crystals to contain concav-
ities. Even over the Antarctic Plateau in winter, which is the
best place on Earth to find pristine crystals, concavities are
common. In the study of Walden et al. [2003, Tables 3 and
4], bullet-clusters dominated the volume of falling crystals
(i.e., excluding blowing snow), and the individual bullets in
those clusters were always hollow. In the future we intend to
study clusters of hollow bullets. A selection of simple
hollow prisms, the topic of this paper, is shown in
Figure 1. Bullet clusters are commonplace in cirrus clouds
[e.g., Ono, 1969; Heymsfield, 1975]; and although the
resolution of the available images from those studies was
not sufficient to determine how many of the crystals were
hollow, we expect to find that hollow crystals do occur in
cirrus clouds, and may in fact dominate. The question
therefore arises, how well does the equal-V/A sphere for-
mulation fare in approximating the scattering and absorp-
tion properties of clouds of such crystals? In this case, by
‘‘volume’’ we mean only the volume occupied by ice,
excluding the volume of indentations, hollows, and inclu-

Figure 1. A selection of hollow atmospheric ice crystals collected at South Pole Station as described by
Walden et al. [2003].
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sions. Of particular interest is the effect of variations of the
asymmetry parameter in conjunction with the degree of
hollowing, and the effect of the internal surface area on the
model’s optical depth.
[8] Our computational approach is to use a ray-tracing

algorithm for single scattering, followed by a four-stream
delta-M discrete-ordinates radiative transfer model to cal-
culate the radiation fluxes associated with plane-parallel
clouds made up of such particles. On the basis of the
analysis of Yang and Liou [1997] for hexagonal crystals,
ray tracing calculations produce sufficiently accurate results
for a size parameter associated with the small dimension of
about 50 or greater. The corresponding size parameters in
this study are �80. Ray tracing calculations are computa-
tionally much faster than exact formulations such as the
FDTD [Yang and Liou, 1996] and T-Matrix [Havemann and
Baran, 2001] methods, and the greater computational effi-
ciency has allowed us to explore a wide assortment of shape
parameters associated with such particles.
[9] Figure 2 shows schematic diagrams of hollow hex-

agonal prisms and the corresponding equivalent spheres,

and defines the shape parameters that specify the prisms
included in this study. The prisms have identical hexagonal
indentations opening at both ends. As in our previous work,
a and c specify the half-width of the basal face (a-axis
dimension) and the length (c-axis dimension) respectively.
G is the exterior aspect ratio, c/2a. Parameter F specifies the
wall thickness at the end of the prism: F = 0 corresponds to
zero thickness at the opening, while F = 1 corresponds to
walls with maximum thickness (a solid hexagon). The
indentation of the crystal is defined by the depth d, but it
is useful to describe it by the ratio Y = 2d/c, which ranges
from zero for solid hexagons to infinity for hexagons with a
hexagonal hole aligned with the c-axis whose walls are
parallel to the outside surfaces. Easier to visualize is the
angle subtended by opposing faces of the indentation,
defined here as a = 2 tan�1[(1 � F)/(GY)]. For limiting
values of Y, this opening angle depends only on Y: no
indentation (Y = 0) corresponds to a = 180�, while
maximum indentation (Y = 1) corresponds to a = 0�.
For intermediate values of Y, the value of a also depends
on the aspect ratio and the wall thickness. For example for

Figure 2. Geometry of the hollow hexagons and associated equal-V/A spheres for a given value of the
half-width of the basal face, a. The crystal length is c, the depth of the indentation is d, and the basal
shoulder width is f. In terms of the ratios defined in equations (3)–(5), the crystals shown are specified as
follows: (a) G = 1.4, Y = 0, a = 180�; (b) G = 1.4, Y = 1.0, F = 0.2, a = 60�; (c) G = 1.4, Y = 3.0, F =
0.2, a = 20�; and (d) G = 1.4, Y = 100, F = 0.2, a � 0�, where a is the opening angle as shown in
Figure 2c. The corresponding size and number of equal-V/A spheres are given below each crystal. The
opening angle, a, is given by a = 2 tan�1[(1 � F)/(GY)].
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Figure 2b, Y = 1, F = 0.2, and G = 1.4 correspond to an
opening angle a = 60�.

2. Equivalent-Sphere Representation for Hollow
Crystals

[10] Following GW99 and NGW03, we represent a
particle of volume V and surface area A by a collection
of spheres that preserves both V and A. Since the ratio V/A
for a sphere equals r/3, the required radius of the equal-V/A
sphere is

rVA ¼ 3
V

A
; ð1Þ

and the number of equivalent spheres per nonspherical
particle, ns, is given by

ns ¼
3 V

4 p r3VA
: ð2Þ

These two formulae can be readily applied to concave
hexagonal crystals as shown in Figure 2. As in NGW03, we
define the aspect ratio, G, for hexagonal crystals,

G ¼ c

2 a
: ð3Þ

For hollow crystals we define two additional ratios,

Y ¼ 2 d

c
; ð4Þ

F ¼ f

a
; ð5Þ

where the dimensions a, c, d, and f are shown in Figure 2.
The geometry of the crystals can then be specified using
these dimensionless ratios and a single linear dimension, for
example a, by noting that

c ¼ 2 a G;

d ¼ a G Y;

f ¼ a F:

ð6aÞ

To distinguish among the cases for which the indentation
produces a hole through the center of the crystal we also
define

Y ¼ 1 if Y < 1 no holeð Þ

Y ¼ Y if Y � 1 holeð Þ:
ð6bÞ

The radii of the equal-V/A spheres are given by

rVA ¼ a �

ffiffiffi
3

p
G 3� 1� Fð Þ2Y 1� 1� 1

Y

� �3h ih i
4Gþ

ffiffiffi
3

p
F 2� Fð Þ þ 1� Fð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� Fð Þ2 þ 4 GYð Þ2

q
1� 1� 1

Y

� �2h i :

The number of spheres per crystal is then determined from
equation (2) using (7) together with the volume of ice in the
crystal,

Vx ¼
ffiffiffi
3

p
a3 G 3� 1� Fð Þ2Y 1� 1� 1

Y

� �3
" #" #

: ð8Þ

Note that ns depends only on the ratios defined in
equations (3)–(5) and not on the size of the crystals. In
the limit that the indentation disappears (Y ! 0), we have

lim
Y!0

Vx ¼ 3
ffiffiffi
3

p
a3 G ð9aÞ

lim
Y!0

rVA ¼ a
3

ffiffiffi
3

p
G

4Gþ
ffiffiffi
3

p : ð9bÞ

These are identical to the values for solid hexagons
(NWG03, equations (6c) and (3)). In the opposite limit
Y ! 1), we consider a polynomial expansion of (1 � 1

Y)
n

noting that in the limit of large Y,

lim
Y!1

1� 1

Y

� �n

¼ 1� n

Y

� �
;

and we obtain

lim
Y!1

Vx ¼ 3
ffiffiffi
3

p
a3 G� 3

ffiffiffi
3

p
1� Fð Þ2 a3 G: ð10aÞ

Since c = 2aG, and a(1 � F) is the distance from the center
of the crystal to the inside wall, a brief calculation shows
that in this limit Vx is the volume of the hexagonal outer
shell minus the volume of the hexagonal void inside it, as
expected.
[11] The surface area in the limit Y ! 1 is equal to the

area of a hexagon with a nested hexagonal hole through the
c-axis, lim

Y!1
Ax = 6ac + 3

ffiffiffi
3

p
[a2 � (a � f)2] + 6 (a � f)c.

The limit for rVA is then

lim
Y!1

rVA ¼ 3 lim
Y!1

Vx

Ax

� �
; ð10bÞ

consistent with equation (1). Further, as F approaches 1, we
find that as the hole vanishes,

lim
F!1

lim
Y!1

rVA ¼ a � 3
ffiffiffi
3

p
G

4Gþ
ffiffiffi
3

p ; ð10cÞ

recovering NGW03 equation (6a).

3. Single Scattering

[12] The first stage is to calculate the single scattering
properties of the particles to be compared. For each non-
spherical particle we consider the scattering properties
averaged over orientation for a randomly oriented ensemble.
For spheres, we average over a lognormal size distribution
to smooth out resonance features. The distribution is chosen
such that the effective radius (NGW03 equation (11), forð7Þ
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example) is equal to rVA for the non-spherical particle in
question.

3.1. Mie Theory and Ray Tracing

[13] The scattering properties of spheres were calculated
from Mie theory, using the computer code of Wiscombe
[1979, 1980]. For randomly oriented concave hexagonal
crystals a ray-tracing code supplied by A. Macke was
employed [Macke et al., 1996]. In this implementation, a
‘‘ray’’ of electromagnetic radiation is defined by a direction
of propagation, direction of electric field vectors, and a
Stokes vector, although here we consider only unpolarized
radiation since we are interested only in radiation fluxes.
The algorithm addresses reflection and transmission of a
bundle of parallel rays by ice polyhedra. For each crystal
orientation, the diffraction component is calculated from the
geometrical cross section. Legendre moments of the phase
function (of which the first is the asymmetry parameter, g)
are calculated by numerical integration. For the calculations,
we specified 100 rays per crystal orientation, with a max-
imum of 100 total internal reflections. Ten thousand ori-
entations were calculated for each crystal shape. We
compared selected cases of 100 rays and 10,000 orientations
with more accurate computations using 300 rays and 30,000
orientations. The differences were sufficiently small that we
decided to use 100 rays and 10,000 orientations for the
complete set of analyses.
[14] Because of the large number of variables needed to

describe the hollow crystals, we limit the results to only two
wavelengths, 0.5 mm and 1.6 mm. These provide cases with
very small absorption and moderate absorption respectively,
and are cases where we had found the largest errors in our

prior analysis (NWG03). It would be interesting also to
examine a case of strong absorption in the thermal infrared,
for example, l = 11 mm, but the crystal sizes found in cirrus
are not in the geometric-optics limit for that wavelength.

3.2. Results for Single Scattering

[15] Figure 3 displays single-scattering albedo wo (or
single-scattering coalbedo, 1 � wo) as a function of G for
varying indentation parameters (Y), at the visible and near-
infrared wavelengths. The single-scattering albedo of equal-
V/A spheres is higher than that of the crystals over most of
the range. The discrepancy is smaller for solid hexagonal ice
crystals (Y = 0) than for the hollow ones. However, we will
show below in section 3.4 that for concave crystals it is
misleading to compare values of wo directly. Instead a
combination of wo, g, and t is relevant.
[16] Figure 4 displays the asymmetry parameter as a

function of G, for varying indentation parameters, at the
two wavelengths. Note the dip below the equal-V/A sphere
value for solid equidimensional hexagonal ice crystals, with
a minimum at G � 1, as in Figure 7 of NGW03. The
minimum becomes less pronounced and shifts to smaller
values of G for concave crystals with increasing indenta-
tions. This figure covers a very wide range of G. Plates and
columns found in the atmosphere are likely to have G values
limited to a more restricted range, from 0.1 to 30, as will be
illustrated in Figure 10 in section 4.2.

3.3. Transformation of Optical Depth by ‘‘Fluffiness’’

[17] When a hollow crystal is represented by a collection
of equal-V/A spheres, the interior surfaces of the crystal are
represented as exterior surfaces of spheres. Consequently

Figure 3. (a) Single-scattering coalbedo, (1 � wo), as a function of aspect ratio for concave ice crystals
for a range of indentation parameters Y at a wavelength of l = 0.5 mm. (b) Single-scattering albedo at l =
1.6 mm. The horizontal lines indicate the values for equal-V/A spheres. In both panels, F = 0.2 and rVA =
20 mm.
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the total projected area of the spheres exceeds the projected
area of the crystal, and the optical depth of the model cloud,
ts, exceeds that of the real cloud, tx. Physically what is
happening is that the interior surfaces of a crystal can cause
a photon to scatter several times within a crystal before
exiting. In some cases this may result in less forward
scattering, more side scattering and backscattering, and a
low value for gx. In the spherical representation, this
scattering at the interior surfaces of an ice crystal becomes
classified as multiple scattering, resulting in an adjusted
optical depth.
[18] The ratio of surface area, A, to orientationally aver-

aged projected area, P, is exactly 4 for a sphere or for any
convex three-dimensional shape [Vouk, 1948]. For a crystal
containing concavities, A/P exceeds 4. The optical depth of
the model cloud of spheres, ts, relative to the optical depth
of the real cloud, tx, is derived from equations (1), (2) and
(8) of GW99,

ts
tx

¼ A

4P

Qext;s

Qext;x
; ð11Þ

where P is the orientation-averaged projected area for the
crystals. It is convenient to define the ‘‘fluffiness,’’ F, of a
particle as

F ¼ A

4P
; ð12Þ

For convex particles F = 1, but for concave particles with
excess area associated with interior surfaces, we have in

general that F > 1; and F tends to increase with degree of
hollowing and complexity in crystal shape.
[19] For crystals and spheres that are both large enough

that Qext � 2, we see from equations (11) and (12) that the
ratio of optical depth of the model cloud to optical depth of
the real cloud is equal to the fluffiness,

ts
tx

¼ F: ð13Þ

3.4. Similarity-Parameter Ratio

[20] Since our objective is to assess the accuracy of equal-
V/A spheres for determining radiative energy fluxes, we
note that it is necessary to consider more than just the
significant differences in asymmetry parameter. In particu-
lar, the effects of single scattering albedo and variations in
optical depth must also be taken into account. This is done
consistently in our multiple scattering calculations, de-
scribed below; however, we can formulate a predictive
criterion by making use of the concept of the similarity
principle, which has been considered in some detail by van
de Hulst [1980, chap. 14] and Liou [2000, sect. 6.5.3].
[21] The similarity principle seeks to define a similarity

parameter, S = S(Qext, wo, g), such that the apparent optical
properties of a multiple-scattering medium do not differ
much for combinations of its arguments that leave S
invariant. Our objective is to find an S suitable for compar-
ing spheres and crystal forms. Various possibilities have
been discussed depending on particular restrictions imposed
on the optical depth and on the various radiation fluxes. We

Figure 4. As in Figure 3, but showing the asymmetry parameter, (a) for l = 0.5 mm, and (b) for l =
1.6 mm.
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tested several of these and found a form of particular utility
that is derived as follows. Starting with Liou’s equation
(6.5.36a), we require that

tx 1� gxð Þwo;x ¼ ts 1� gsð Þwo;s: ð14Þ

This requirement is derived from the delta-M transforma-
tion, which was designed to preserve the total attenuation of
diffuse radiation by the medium and to adjust for differences
in wo and g such that the mathematical form and the solution
of the equation of transfer are preserved. Equation (14) is
also consistent with a theoretical result of the two-stream
method [e.g., Coakley and Chylek, 1975] that the albedo
and transmittance of a nonabsorbing cloud (wo = 1) are
determined by the product t(1 � g).
[22] Combining equations (11), (12), and (14), we define

the similarity parameter for particle type p,

Sp ¼
1� gp
� �

wo;p

Fp
; ð15Þ

and we define the similarity ratio, R, as the ratio of
similarity parameters for sphere (for which fluffiness equals
one) and crystal (with fluffiness F � 1),

R ¼ ts
tx

1� gsð Þwo;s

1� gxð Þwo;x
¼ F

1� gsð Þwo;s

1� gxð Þwo;x
ð16Þ

[23] The ratio R provides a quantitative index to investi-
gate the applicability of the similarity principle. If S is
nearly the same for crystals and spheres, then R � 1, and we
expect that the model of equivalent spheres will give
accurate results in multiple-scattering. For complex ice
crystals with concavities, measurements in Arctic clouds
[Gerber et al., 2000] have found an average gx of 0.74.
Since gs � 0.87 for the equal-V/A spheres, we would expect
the altered t in the model to compensate for the altered g,
yielding R � 1 if F � 2. Schmitt and Heymsfield [2005]
have developed a method to estimate internal surface areas
from images of ice particles. For particle populations in
tropical cirrus clouds, they do find fluffiness values of 2.0 to
2.5. The shapes in Figures 2c and 2d (Y = 3 and 100) also
have fluffiness values approaching 2, but Figure 4 shows
that the expected compensation of t and g does not occur in
these cases. None of our hollow crystals have asymmetry
parameters as low as those observed by Gerber et al., and in
fact the gx values of our crystals actually exceed gs for most
aspect ratios. We will proceed with the computation of
multiple-scattering errors for the shapes shown in Figure 2,
but the above discussion suggests that the equivalent-sphere
representation may work much better for real clouds with
gx � 0.74 than for the shapes considered here, where
gx often exceeds 0.9.
[24] Figure 5 displays R as a function of G for varying

crystal indentations, Y, at our visible and infrared wave-
lengths. R varies considerably, from about 0.5 to 3.2 at the
visible wavelength, and from 0.7 to 4.0 at 1.6 mm. For each
indentation Y, there are two values of G for which R = 1. As
in the case of asymmetry parameters (Figure 4), the mini-
mum in R becomes less pronounced and shifts to smaller
values of G for concave crystals with increasingly thin
walls. The extent to which a value of R � 1 is a good
indicator of multiple-scattering success for the equal-V/A
spheres will be evaluated in section 5.

4. Multiple Scattering

[25] We now compare the bulk radiative properties of a
horizontally homogeneous cloud of randomly oriented
hexagonal ice prisms to those of a cloud of equal-V/A
spheres. Calculations of the apparent optical properties
(hemispherical reflectance, absorptance, and transmittance)
are carried out for a cloud consisting only of ice crystals, for
wavelengths of 0.5 and 1.6 mm using a four-stream delta-M
discrete-ordinates program [Grenfell, 1991]. To isolate the
optical properties of the cloud itself, the model consists of a
single homogeneous plane-parallel cloud layer over a black
surface, illuminated from above by a plane wave at the
global average solar zenith angle of 60�. We plot the
apparent optical properties as functions of the ice water
path (IWP), defined as the total mass per unit area, inte-
grated vertically through the cloud.

4.1. Monodisperse Crystals

[26] For randomly oriented hollow crystals of the same
size and shape, the relation of IWP to cloud optical depth,
tx, is found to be

tx ¼
3

4

IWPQext

rVA rice

1

F
; ð17Þ

Figure 5. As in Figure 3, but showing the ratio of
similarity parameters (equation (16)), (a) for l = 0.5 mm,
and (b) for l = 1.6 mm; the horizontal lines indicate ratios at
which the equal-V/A sphere representation is expected to be
most accurate.
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where rice is the density of pure ice, 917 kg/m3. (In the
case F = 1 (no concavities), this equation is identical to
NGW03 equation (15).) The generalization of NGW03’s
equation (16) is, from equations (11) and (12) above,

ts
tx

¼ Qext;s

Qext;x
F: ð18Þ

[27] Figures 6–9 show the values of cloud reflectance,
absorptance, and transmittance for the wavelengths 0.5 and
1.6 mm, as well as the corresponding errors; that is, the
differences between the equivalent-sphere results and
the exact solution. Reflectance (albedo), r, is defined as
the ratio of upwelling irradiance above the cloud to the
incident irradiance. Absorptance, a, and transmittance, t, are
ratios of absorbed and transmitted irradiance to incident
irradiance. The results are displayed as contour plots as a

function of crystal aspect ratio and IWP for Y values of 0, 1,
3, and 100.
[28] At l = 0.5 mm we plot only the reflectance

results (Figure 6), since the absorptance is very small and
t = (1 � r) to high accuracy. In this case, reflectance is a
relatively weak function of G and increases from near zero
for the smallest IWP values to 1.0 for IWP � 105. The
reflectance error is larger for the hollow crystals than for
solid crystals (Y = 0); the error in representing hollow
crystals is largest for extreme shapes (long columns or thin
plates) and smaller for equidimensional crystals. In fact, the
large errors on the left and right sides of Figures 6–9 are
probably not important for atmospheric applications,
because atmospheric ice crystals appear to have aspect
ratios mostly in the range 0.1–30 where the errors are
much smaller.
[29] For l = 1.6 mm, absorptance is not negligible, so

reflectance, absorptance, and transmittance are all presented

Figure 6. Contours of reflectance and reflectance error, for clouds consisting of concave ice crystals,
as functions of ice-water path and aspect ratio at l = 0.5mm, rVA = 20 mm and F = 0.2. Results for
four indentations are shown. The plotted error is the reflectance using spheres minus the true
reflectance.
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in Figures 7 through 9. The transmittance error shows
behavior similar to the visible reflectance error (Figure 6)
in its dependence on G. For IWPs exceeding 20–30 g m�2,
the transmittance is very small and the reflectance and
absorptance patterns are conjugates of one another; i.e.,
a = 1� r, and Da =�Dr, where Dmeans error. In this region,
r and a depend strongly on G but are nearly independent of
IWP. Still the errors are below 0.05 over a band of G values
that depends on Y (0.2–7, 1.6–2.5, 0.07–1, and 0.05–0.26
respectively, for Y values 0, 1, 3, and 100). As was true for
the visible wavelength, the largest errors are for extreme
shapes, and the widest band of small error is for the
solid columns. (For values of IWP below about 10 g m�2,
the G-dependence is weak for all three quantities, and the
errors are all less than 0.05.)

4.2. Clouds With a Distribution of Aspect Ratios

[30] The errors shown in Figures 6–9 are for monodis-
persions. The errors in representing real clouds may be
smaller, because the spread of aspect ratios, indentations,
and crystal sizes in a real cloud will include domains of both

positive and negative error. We investigate this possibility
using the shape distribution presented by Walden et al.
[2003] for atmospheric ice crystals collected at South Pole
Station during 100 days in the winter of 1992. For this work
we exclude blowing snow and clusters, and consider only
the shape-distributions of simple prisms such as shown in
Figure 1, for which 4508 crystals were measured [Walden et
al., 2003, Figure 4]. To apply the present technique to this
data set we extend the calculation of cloud optical depth and
fluffiness to a polydispersion over G with a distribution
function N(G). From a straightforward generalization of
GW99’s equation (11), we have for the crystals

tx ¼
IWP

rice

ZGmax

Gmin

P Gð Þh iN Gð ÞQext;x Gð Þ dG

ZGmax

Gmin

Vx Gð ÞN Gð Þ dG

; ð19Þ

Figure 7. Reflectance and reflectance error for l = 1.6 mm, rVA = 20 mm and F = 0.2.
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This can be expressed in a form analogous to GW99
equation (12),

tx ¼
3

4

IWPQext eff

rVA eff rice

1

Feff
; ð20Þ

where the effective quantities are given by

Qext;eff ¼

ZGmax

Gmin

P Gð Þh iN Gð Þ Qext;x Gð Þ dG

ZGmax

Gmin

P Gð Þh iN Gð Þ dG

; ð21Þ

Feff ¼

ZGmax

Gmin

Ax Gð ÞN Gð Þ dG

ZGmax

Gmin

4 P Gð Þh iN Gð Þ dG

; ð22Þ

rVA;eff ¼ 3
Vx;eff

Ax;eff
; ð23Þ

where

Vx;eff ¼

ZGmax

Gmin

Vx Gð ÞN Gð Þ dG

ZGmax

Gmin

N Gð Þ dG

ð24Þ

Ax;eff ¼

ZGmax

Gmin

Ax Gð ÞN Gð Þ dG

ZGmax

Gmin

N Gð Þ dG

: ð25Þ

[31] The crystal shape distribution (Figure 10) is bimodal,
and can be represented as a sum of two lognormal Gaussian

Figure 8. Absorptance and absorptance error for l = 1.6 mm, rVA = 20 mm and F = 0.2.
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functions with geometric mean values Gg = 0.5 and 3, and
geometric standard deviations sg = 0.18 and 0.34,
corresponding to plates and columns, respectively. Note
that the minimum between the two modes occurs very close
to G = 1, equidimensional prisms. This puts a reduced
weight on the range of G values where equal-V/A spheres
produce large errors for the solid prisms (NGW03).
[32] The results of the multiple scattering calculations at

0.5 and 1.6 mm are shown in Figure 11 for each of the two
modes individually as well as for the combination of the
two. We show reflectance and absorptance for clouds of
equal-V/A spheres, compared to solid prisms and also to
hollow prisms with Y = 1, all of which have rVA = 20 mm.
The indentation Y = 1 was chosen based on visual inspec-
tion of the hollowed crystals in Figure 1. Both reflectance
and absorptance increase smoothly with IWP, reaching
saturated values at about 104 and 102 g m�2 at l = 0.5 mm
and 1.6 mm respectively. For the column mode, the errors in
the spherical representation at 1.6 mm for both reflectance
and absorptance are less than about 0.05 for the solid
columns and 0.07 for the hollow crystals. For the plate

mode, the equivalent sphere results agree within 0.09 at
0.5 mm and within 0.03 at 1.6 mm for both crystal types. For
the combined case, the errors are intermediate with a
maximum of about 0.06 at 0.5 mm for solid crystals. Slightly
better overall agreement is obtained for solid crystals than
for hollow crystals.

5. Discussion

[33] To test the utility of the similarity ratio for predicting
accuracy of irradiance calculations, we show in Figure 12
the errors in the multiple-scattering results as a function
of the similarity-parameter ratio R (equation (16)), covering
the full ranges of G and IWP for selected values of
indentation Y and shoulder-width F. Results are displayed
for a solid prism and a hollow prism, as examples of a
general pattern. The errors lie in two opposed fan-shaped
domains with a narrow neck near R = 1, and they span a
range from zero to a maximum value for which optical
depth t � 1. At any given value of R, the range of
errors displayed is due to various values of optical depth.

Figure 9. Transmittance and transmittance error for l = 1.6 mm, rVA = 20 mm and F = 0.2.
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Figure 12a confirms the desired result for reflectance at l =
0.5 mm, in that the error is small for all cases where R � 1
regardless of cloud optical depth. Results for l = 1.6 mm are
displayed in Figures 12b–12d. There, minima in reflectance
and absorptance errors correspond to R � 0.9, while the
minimum in transmittance error corresponds to R � 1.1. We
conclude that for a similarity parameter ratio in the range
0.9–1.0, the minimum error is about 0.04, and a value of
R = 1 predicts errors in r, t, and a of at most ±0.06 at both
wavelengths. Although not discriminated in the figure, a
point-by-point analysis of the pattern of errors reveals that
the largest errors correspond to optical depths t � 1, while
very thick and very thin clouds lead to small errors
regardless of the value of R. These observations are con-
sistent with the error results displayed in Figures 6–9. We
conclude that R � 1 is a sufficient condition for agreement
at about the 0.06 level.
[34] In geometric optics, Qext for the crystals is taken to

be identically equal to 2 while for the spheres the precise
value is slightly larger for the cases considered here. This
produces a slight bias in the ratio of optical depths of the
two media as is evident from equation (18). Correcting for
this would shift the R value for minimum predicted error
from 1.0 to 0.97 and 0.95 for l = 0.5 mm and 1.6 mm
respectively. Since we do not know the exact values of Qext

for the crystals, however, we cannot make an accurate
correction here and simply point out that the slight bias is
consistent with the results in Figure 12.

5.1. Similarity Ratios for a Distribution Over Aspect
Ratio

[35] Next we would like to test whether the effective
similarity ratio Reff, using Feff from equation (22) together
with the effective values of wo,x and gx, has a predictive
accuracy for using equal-V/A spheres for a distribution over
particle shapes comparable to the results for individual
particles. We have calculated the Reff values for the South

Pole particle distributions over aspect ratio (Figure 10)
using the following generalization of equation (16):

Reff ¼ Feff

1� gsð Þ wo;s

1� gx eff

� �
wo;x eff

; ð26Þ

where

wo;x eff ¼

ZGmax

Gmin

wo;x Qext;x Gð Þ P Gð Þh iN Gð Þ dG

ZGmax

Gmin

Qext;x Gð Þ P Gð Þh iN Gð Þ dG

ð27Þ

gx;eff ¼

ZGmax

Gmin

gx wo;x Qext;x Gð Þ P Gð Þh iN Gð Þ dG

ZGmax

Gmin

wo;x Qext;x Gð Þ P Gð Þh iN Gð Þ dG

: ð28Þ

[36] Calculations of Reff were carried out separately for the
plate mode (Gmean < 1), for the column mode (Gmean > 1),
and for the entire distribution, and then compared with the
corresponding maximum errors in reflectance (Figure 13).
The values of Reff range from 0.64 to just above 2.0, while
the maximum reflectance error ranges from about �0.1 to
+0.13 in a narrow envelope similar to the envelope of
Figures 12a and 12b. Errors are positive for the columns,
negative for the plates, and span the envelope. The envelope
crosses the zero error line at Reff � 0.9, similar to Figure 12.

5.2. Geometric Considerations

[37] The use of equal-V/A spheres implies a reclassifica-
tion of some scattering events from ‘‘single scattering’’ to
‘‘multiple scattering.’’ Scattering from the inside surfaces of
particles with concavities adds complexity to the single
scattering parameters and in some cases involves rays
exiting and reentering the same particle. With equal-V/A
spheres, this extra scattering is taken into account by
requiring more and smaller spheres (Figure 2) and by
enhancing the multiple scattering. The diameter of the
spheres tends to match the thickness of the walls of the
hollow crystals, so that for a given particle mass, increased
fluffiness translates into more smaller spheres. The enhance-
ment of multiple scattering is accomplished by adjusting the
ratio of optical depth of the clouds of spheres to that of the
crystals appropriately for the radiative transfer calculations
using equation (18).
[38] Equal-V/A spheres may provide a useful way of

describing the radiative effects of complex cloud particles
from remote sensing observations. The description identi-
fies the appropriate effective size scale for scattering with-
out requiring a precise knowledge of the geometry of the
crystals involved.

6. Conclusions

[39] For single scattering at wavelengths 0.5 and 1.6 mm,
where the largest discrepancies occurred in our previous

Figure 10. Frequency distribution of aspect ratios for
atmospheric ice crystals observed at South Pole Station in
winter, from data in Figure 4b of Walden et al. [2003]. Also
shown are lognormal fits corresponding to columns and
plates: Gmode = 0.45 and 3.2, and sg = 0.18 and 0.34.
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analysis, the accuracy provided by equal-V/A spheres
depends on asymmetry parameter and degree of hollowing.
For the cases considered here, errors in single-scattering
coalbedo at l = 1.6 mm are small, with [D(1 � wo)]/(1 � wo)
less than 5%. At l = 0.5 mm the absorption is so weak that
errors in wo have no effect on multiple-scattering results.
Asymmetry parameters vary significantly with G, even
holding rVA constant. We show, however, that the most
relevant criterion for comparison is not just the value of g,
but instead the similarity ratio R (equation (16)) based on
the quantity (1 � g)wo/F, where F is the ‘‘fluffiness’’ of the
crystals.
[40] The errors in fluxes introduced by equivalent spheres

are largest near t � 1, but the use of the similarity ratio and
choosing configurations for which R � 1 does identify the
situations where the error is small. In addition, the errors are
small for large and small optical depths, thus R � 1 is

sufficient although not necessary for identifying good
agreement. For the distribution of aspect ratios found by
Walden et al. [2003], reflectance and absorptance are
matched by the equivalent-sphere model at all optical
depths, with maximum errors of about 0.08.
[41] Our earlier work [Neshyba et al., 2003] showed

significant multiple-scattering errors in the equivalent-
sphere representation for certain ranges of aspect ratios
for solid plates and columns. The errors were explained
by phenomena of direct transmission through plates and
corner-reflection by equidimensional prisms, so we specu-
lated that the multiple-scattering errors would be smaller for
the irregular crystals typical of natural clouds. That specu-
lation has not been borne out by the current study, which
found errors for hollow prisms comparable to and sometimes
exceeding those for solid prisms. However, there is more to
be investigated; the irregularity in natural crystals still

Figure 11. Reflectance and absorptance at wavelengths 0.5 and 1.6 mm, as functions of ice-water
path (IWP) for clouds of equivalent spheres, and for clouds of crystals with Y = 0 and Y = 1 with the
G-distribution functions shown in Figure 10, for rVA = 20 mm and solar zenith angle 60�. (a, b) Columns.
(c, d) Plates. (e, f) Columns and plates. Absorptance is very small at l = 0.5 mm (arrows).
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greatly exceeds the ideal shapes studied here. As Walden et
al. [2003] showed, the internal walls of hollow bullets are not
flat but rather corrugated. Asymmetry parameters for crystals
sampled in Arctic clouds have gx� 0.74, smaller than any of
the crystals studied here (Figure 4). Since gs � 0.87 for the
equal-V/A spheres, in that case the enhanced optical depth
from fluffiness would counteract the difference in g, unlike
in the cases studied in this paper. This suggests that the
equivalent-sphere representation will work better for the
more irregular crystals found in real clouds than for the
ideal shapes we have studied thus far.
[42] We conclude that the method of equal-V/A spheres

can be used for hexagonal columns and plates, both solid
and hollow, provided the error plots are consulted for
the crystal shapes and optical depths of interest. The
formulation developed in this paper for representing hollow
crystals as equal-V/A spheres can also be applied to more
complex crystal shapes such as bullet rosettes, irregular
shapes and complex clusters, that often occur in cirrus
clouds. Its accuracy for such complex shapes remains to
be determined.
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