ATMS 533. Problem Set 1 Tuesday 1 October 2013. Due Tuesday 8 October.

1. Relative brightness of snow, Moon, and Sun

(a) (2 points) Given that the total angular diameter of the Sun, as seen from Earth, is 32
minutes of arc, calculate the total solid angle Am occupied by the Sun in the sky, and the
fraction f of the sky occupied by the Sun.

(b) (3 points) Consider a horizontal snowfield on the Earth’s surface, with a flux-
reflectance (“albedo”) rsnow, illuminated by the Sun at zenith angle 60°. Assuming that
the snow reflects radiation isotropically (and assuming no attenuation by the atmosphere),
show that the brightness (equivalent to “intensity”, or “radiance”, units W msr't) of the
snow, lsnow, relative to that of the Sun, lsun, is

Isnow/ Isun =f- Ianow (1)
(c) (5 points) Consider a full moon, full but not eclipsed. Assuming that the Moon has
uniform albedo rmoon, and that all parts of the lunar surface reflect isotropically, the
reflected brightness will vary across the illuminated hemisphere of the Moon because the
Moon is a curved surface, so that different zones on the Moon are illuminated at different
zenith angles. Assume that the Moon-Sun distance differs negligibly from the Earth-Sun
distance, and that the lunar radius is much smaller than the Earth-Moon distance. Show
that the average brightness of the full moon, Imoon (averaged over the lunar disk, as seen
from the Earth), relative to that of the Sun, is

L =2ty @)

moon sun 3 moon

(d) (2 points) Evaluate (1) and (2) to obtain the relative brightnesses of Sun, snow, and
Moon, assuming that the snow and Moon have albedos 1.0 and 0.1 respectively.
Compare your value of Imoon/lsun to the measured value 1/430,000, and give a possible
reason for the difference.

2. Relative densities of molecules and photons (4 points)

(a) For an overhead sun, the downward flux of solar energy onto the top of the atmosphere
is 1370 W m2 (the “solar constant”). Assuming the Earth’s albedo is 0.3, and that the
Earth is an isotropic ("Lambertian”) reflector, compute the number-density of solar photons
(photons/mq) in the upper atmosphere (i.e. above all scattering and absorbing layers), when
the Sun is overhead. Use the approximation that all solar photons are at the visible
wavelength A =500 nm (then you can just convert between energy density u, mean

intensity 1, and photon density). Ignore the curvature of the Earth.

(b) Find the height in the atmosphere where the number-density of molecules is the same as
the number-density of solar photons. Assume an isothermal atmosphere with temperature
273 K. Assume the atmospheric density o decreases exponentially with height z, as p(z) =
p(0) exp(-z/H), with scale-height H=8 km.
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Fig. 3. Measured reflec- L

tance (dots) is compared
with reflectance predicted
by the model (solid lines) for
plaster. Surface radiance
L,, computed as an aver-
age over the entire surface
patch, is plotted as a func-
tion of sensor direction 6,
for three angles of inci-
dence 6. Albedo p and
roughness o were selected
to achieve the best fit. In
these measurements, the
source direction, sensor di-

rection, and the mean sur-

face normal are coplanar
(& = &, = 0). Surface brightness increases as the sensor ap-
proaches the source direction, violating Lambert’s law that pre-
dicts brightness to be independent of viewing direction. This
brightness increase is also in contrast to surface reflection mech-
anisms that produce peaks around the specular direction. In
these and other experiments (28), the proposed model is found to
be in strong agreement with measured data. The narrow peak
observed in the source direction is attributed to the opposition
effect (30). This phenomenon is relatively less important to visual
perception as it requires the observer and the source to be within
a few degrees from each other, a situation difficult to emulate in
practice without either one obstructing the view of the other. The
scope of the proposed model is broadened by combining it (28)
with previously suggested ones for surface reflection (26) that are
based on similar roughness assumptions. Validity of such a com-

bined model was verified with samples such as sand, cloth, foam, sandpaper, and wood.

Fig. 4. (A) Video camera im-
age of two cylinders made
from exactly the same material
(porcelain) and iluminated
from approximately 10° above
the camera. The right vase is
much rougher than the left
one, resulting in a flatter ap-
pearance. (B) Synthetic image
of cylinders with similar dimen-
sions, rendered with the theo-
retical model (left: o = 5°, right:
o = 35°). (C) Camera image of
two cubes made from stone-
ware, illuminated from approx-
imately 18° to the left of the
camera. (D) Synthetic image of
cubes (left: ¢ = 7°, right: o =
40°). In both camera and syn-
thetic images, low macro-
scopic roughness of the left
cube results in nearly Lamber-
tian appearance, whereas very
high roughness of the right
cube results in all three faces
producing almost the same
brightness with clear edges no

longer.visible. The model and experiments suggest that for very high macroscopic
roughness, when source and sensor directions are close to one another, all

surface normals generate the same image brightness. Alternately, any object
irespective of its 3D shape produces just a silhouette, making it impossible to
perceive shape. (E) Spheres illuminated and viewed from the same direction. As
roughness increases (left to right: & = 0°, o = 15°, and o = 40°) shading becomes
flatter. For extreme roughness (far right), the sphere appears like a flat disc, as is

observed in the case of a full moon.
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masked, shadowed, masked and shadowed,
and neither masked nor shadowed. The
complexity of the integral is easily seen
by imagining the different masking and
shadowing conditions that arise as a
single V-cavity is rotated in the surface
plane. We arrived at a solution to the
integral by first deriving a basis function
for each component of the integral, and
then finding coefficients for the bases
through extensive numerical simulations
(28). The accuracy of the model was
verified by matching model predictions
with reflectance measurements from nat-
ural surfaces such as plaster, sand, and
clay (Fig. 3). In all cases, predicted and
measured data were found to be in strong
agreement. A systematic increase in
brightness is observed as the sensor moves
toward the illuminant; this backscat-
tering is in contrast to Lambertian be-
havior where brightness is constant and
independent of sensor direction, and also
in contrast to surface reflection where a
peak in brightness is expected in the
vicinity of the specular direction (26).
For applications where simplicity is de-
sired over high precision, approximations
were made to arrive at this qualitative
model:
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ATMS 533. Problem Set2 Total 15 points.
Tuesday 8 October 2013. Due Tuesday 15 October.

1. Photons of solar radiation at a particular wavelength entering an infinitely-thick cloud will
travel a variety of distances into the cloud before being extinguished (scattered or absorbed).
We define the "mean free path" as the average of these distances. Write an expression for the
mean free path in units of optical depth. Then evaluate this expression to find the numerical

value of the mean free path (in optical depth units). You may need the series expansion:
eX=1+x+x221+x3/3!+....

Hint: To find the number of photons whose paths end in the interval At between 1; and
T; + At, compute the number of initial photons that reach t; and the number that reach tj + Ar.

- - - continued over - - -
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So the mean free path is one unit of optical depth.
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ATMS 533. Homework 3. 17 October 2013. Due Thursday 24 October.

A water-cloud of optical thickness 1", positioned above a black surface, is illuminated
from above. Consider the mid-visible wavelength A = 550 nm, where liquid water is non-
absorbing. The cloud droplets scatter light isotropically (these are very special droplets!)
The source function S is therefore independent of (6,4). To simplify the math in this
problem we will assume S has the functional form S(t) = exp(-az) for all t, where a is a
constant.

(a) Integrate the source function over t to obtain expressions for the reflected intensity
I"(0,) and transmitted intensity 1(z", ).

(b) Plot the reflected and transmitted intensity as functions of 6 from 6 = 0° to 6 = 90°
for three cloud thicknesses: t° = 0.1, 1, 5, using a = 0.4. Explain the physical reasons for
the shapes of the plots. If you're curious, you're of course welcome to try other values of
7" and other values of a.

[The transmitted intensity field will contain the attenuated direct beam from the Sun as a

delta-function in the solar direction (6o,¢0), and in all other directions will consist only of
scattered photons. You can omit the delta-function from your plots, and omit the incident
flux at the top boundary from your derivation in part (a).]
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ATMS 533. Problem Set 4. 20 points.
Thursday 31 October 2013. Due Thursday 7 November.

Two-stream method.
Assume isotropic scattering unless otherwise indicated.

1. (6 points) Assume isotropic downward radiation at the top of a layer, with incident
flux ntly; reflectivity of the lower boundary is zero.

(a) Plot albedo r at the top of the atmosphere (1=0) as a function of total optical depth t*
from 0.01 to 100, for @=1.0 (cloud at visible wavelengths) and also for @=0.36 (smoke at
visible wavelengths).

(b) For w=1.0, plot I*/I, and I/, as functions of t, for 7*=10 and t*=2.

(c) For t*=10 and w=1, plot albedo as a function of .

2. (5 points)

(a) For w<l, show that in the optically-thin limit (t*<<1), the albedo at TOA is w(1-g)t".
(b) Derive the same result for m=1.

(c) Obtain this same result (albedo = w(1-g)t™) by arguing physically (not
mathematically), without using a two-stream assumption.

3. (5 points) Although the two-stream approximation ignores variation of intensity with
angle in order to obtain a solution to the radiative transfer equation, it is possible to obtain
an estimate of the angular dependence of reflected and transmitted intensity by use of the
source function (page 28 in the handout). Assume isotropic conservative scattering.
Assume the incident flux at the top is 7l (isotropic) and the reflectivity of the lower
boundary is zero, as in problem 1. Obtain expressions for the intensity emerging at the top,
I*(0,), and the bottom, I-(t*,p), for @=1.0 and t*=2, by integrating the source function
over 1. Plot I7(0)/I, and I-(t*)/I, versus 0. Give a physical explanation for these results.

4. (4 points) Assume that 1.8x1014 grams of smoke are injected into the Earth's

atmosphere and spread uniformly in a thin homogeneous layer over the entire northern
hemisphere. [This is the “Nuclear Winter” scenario.] The mass extinction coefficient of

the smoke is ke = 5.5 m2g-! at visible wavelengths (A~0.5um).

(a) Find the total optical thickness t* of the layer.

(b) The single-scattering albedo of the smoke is @=0.36. Assume that the smoke particles
scatter light isotropically. Sunlight is incident on the smoke layer from above. Assuming the
albedo of the Earth's surface is zero, compute the transmittance, absorptance, and reflectance
of the smoke layer using the two-stream approximation. Assume isotropic incidence from
above. Compare the reflectance you obtain to that given by your plot in Problem 1a.
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ATMS 533. Problem Set 5. Total 12 points.
Thursday 7 November 2013. Due Thursday 14 November.

Enhancement of absorption due to scattering.

Introduction:

Use two-stream results for diffuse incidence to compute the solar heating rates for both
clear and cloudy atmospheres, as follows. The incident solar flux at TOA is Qyc0s0,,

where the solar constant is Q,=1370 W m-2 and 8,=60°. The surface albedo is zero.

Clear atmosphere. Assume that the Earth's atmosphere contains no scatterers or absorbers
above 2 km height. Between z=0 and z=2 km there is still no scattering, but there is water
vapor of uniform density. The total precipitable water vapor is 3 g cm=2. The broadband
absorption coefficient of water vapor for solar radiation is k,=0.042 cm2g-1.

Cloudy atmosphere. The cloudy atmosphere is identical to the clear atmosphere except for
the addition of a 1-km-thick cloud between zg and zT, where zg=1 km and z7=2 km. The

cloud has scattering coefficient 65=10 km-! and asymmetry factor g=0.85. The cloud
droplets are non-absorbing. The water vapor content is the same as in the clear atmosphere.

Problem:

1. (4 points) Obtain an expression for the divergence of net flux (dFpet/dz) in the two-
stream approximation

(a) for the case of pure absorption, @=0;

(b) for the general case, O<w<I.

2. (2 points) What is the single-scattering albedo
(a) in the clear air
(b) in the cloud

3. (4 points) Calculate dFe¢/dz (W m-3) as a function of height for both clear and cloudy
atmospheres. Convert to an approximate heating rate by approximating the atmospheric
density as constant in the lowest 2 km, p=1.135 kg m-3, and using the heat capacity of air
as 1004 J kg''deg!. Plot the instantaneous heating rate dT/dt in degrees per day, versus
height for the clear and cloudy atmospheres.

4. (2 points) Give a physical explanation for the differences in the heating rate profiles.
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ATMS 533. Problem Set 6.
Thursday 14 November 2013. Due Monday 25 November.

Discrete Ordinates Method.

You will use the DISORT (DIScrete Ordinates Radiative Transfer) program to
compute intensities in a water-cloud at wavelength 1.6 um, over a black surface. The
DISORT program is a package which is not to be modified. It is called by a driver
program written by Mike Town and maintained by Maria Zatko, which you can modify.
The driver program specifies the inputs to DISORT.

The droplets are 10 um in radius. A Mie-scattering calculation resulted in single-
scattering albedo w=0.9934 and gave 48 phase-function moments, which are listed in the
driver program. [The first moment is the asymmetry parameter, g=0.85.] Select the
delta-M option.

For the standard problem, use a cloud optical depth t"=20, with the Sun at 6,=60°,
$»o=0°. Compute upward intensity at cloud top, and downward intensity at cloud bottom
vs. outgoing zenith angle 6 in the principal plane (the plane containing the surface normal
and the Sun), in both forward and backward directions. Also compute the azimuthally
averaged intensity as a function of 6 (or ) at the top, bottom, and middle of the cloud.
Run the program several times: for 4, 8, 16, and 32 streams, and plot the results from all
runs on the same graph. The accuracy will improve as the number of streams increases.

Repeat for solar zenith angle 6,=78° (1,=0.2). Discuss the results.

Here are Maria's instructions:

You can find everything you need for the DISORT Homework assignment here:
/home/disk/p/mzatko/ATMS533_DISORT

Mike Town (one of Steve Warren's former grad students) wrote a driver that runs the
DISORT radiative transfer code. This way, DISORT is not altered during this
assignment. The driver (disortDriver.m) makes a templnput.txt file that contains the
variables you will specify as the driver runs. The driver passes the templnput.txt file to
the atest.out executable. An ouput text file is then created (e.g.
output4 20 09934 02.txt). The executable has been designed specifically for this
homework assignment. For your own reference, the DISORT code (code.F) has been
included in this folder. A helpful README written by Mike is also in the
ATMS533_Disort folder.

The driver must be run on Linux because the atest.out executable was piled on a Linux
machine. | successfully ran the driver using both the 2007 and 2013 versions of Matlab.

Let me know if you have any questions!
Maria <mzatko@uw.edu>



ATMS 533. Problem Set 7. 14 points total
Monday 25 November 2013. Due Monday 2 December.

1. Cloud albedo at visible wavelengths: dependence on number of cloud-
condensation nuclei. Use the two-stream approximation for albedo R of a conservative-
scattering layer for diffuse incidence (to mimic behavior for a solar zenith angle of 60°),
R =[(1-g)t"]/[1 + (1-g)x"],
and the dependence of optical thickness on effective radius » and liquid water path 7,
" =3W/2rp,
where we have assumed Qext=2. For the following derivation assume a monodispersion,
i.e. all droplets have the same radius 7. Assume that each cloud-condensation nucleus
(CCN) grows to becomes a cloud droplet. Let the number-density N of CCN vary while
liquid water path is held constant. Assume liquid water content is independent of height
in the cloud.
(a) (4 points) Derive the sensitivity of albedo to fractional change in N; i.e. show that
dR/dInN =R(1-R) /3.
(b) (2 points) For a 10% increase in cloud-condensation nuclei, plot the change in the

cloud albedo AR as a function of its initial albedo R.

2. (2 points) A stratus cloud, 1 km thick, consists only of water droplets all the same size,
with radius r = 10 um. The liquid water content of the cloud is L =0.1 g m-3. The
droplets have Qex¢=2, single-scattering coalbedo (1-w)=10-4 (typical of near-IR), and

asymmetry factor g=0.85. Compute the total optical thickness of the cloud t*, and the
delta-Eddington scaled optical thickness t*sE.

3. (2 points) A snowpack, only 1 cm thick, of density p=0.4 g cm-3, consists only of ice
spheres all the same size, with r = 100 um. The ice spheres have Qext=2; (1-w)=10-3
(typical of near-IR) and g=0.89. Compute t* and t"5.

4. (4 points) Clouds and snow contain not only particles but also water vapor, which
absorbs but does not scatter radiation. Assume the relative humidity is 100% in the cloud
and in the snow, both of which are at T=0°C. Assume the mass absorption coefficient of
pure water vapor is 0.5 cm2g-! in the near-IR. (a) Compute t*, @, and 1" for the stratus
cloud in problem 2, including water-vapor absorption.

(b) For the snowpack in problem 3, compute t*, @, and 1", including water-vapor

absorption.
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