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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D14220, doi:10.1029/2007JD009744, 2008

Optical constants of ice from the ultraviolet to the microwave:
A revised compilation

Stephen G. Warren' and Richard E. Brandt'
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Figure 9. Compilation of the (a)—(c) real and (d)—(f) imaginary parts of the complex index of refraction
of ice Th at temperature 266 K. Uncertainty is indicated by the shading.
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Theory of optical constants 18

By "theory of optical constants", we mean an explanation for the frequency-dependence
of permittivity € and conductivity ¢. It is a classical theory. References are Jackson,
Classical Electrodynamics, sec. 7.5, and Griffiths, Introduction to Electrodynamics, sec.
8.4.

€, (L), o describe the response of the material to electric (and magnetic) fields. The
response can depend on the driving frequency ®. A model for the behavior of electrons
in matter gives 6(®) and €(®). For most materials p = p, # f(w).
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Yy |
W\,M
; l AVAVAV
<prirg d iﬁ“ﬁj R
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The EM wave causes an oscillating force in the y-direction. The dipole will tend to line
up with the electric field.

Assume:

(1) d « A, so that the whole atom sees the same phase of E (not true for X-rays).
(2) Magnetic force « electric force:

F=F, +F,= qE+q;X§.

We will show below on Page 24 that the magnitudes of B and E are related by B=E/c,
SO Finag « Feee if vic. The charge moves a distance d during one period (time A/c), so the
speed v=d-c/A<kcifd< A.

There are three forces to consider:
(1) Restoring ("binding") force of spring, with spring constant k: Fp;,q=-ky. Then the

natural frequency of oscillation is @, =vk/m , so k=maj .
(2) "Frictional" damping when the electron moves, a force proportional to the velocity:

dy
F,.,=—my—.
damp }, d ¢ |
(3) External driving force of the incident wave E with frequency w:
F, driv=qE

Now add the forces, and get an équation of motion for the electron, as F'=ma, or ma=F:
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Rohvenn & HoFfuman @

9% ABSORPTION AND SCATTERING BY A SPHERE

noted previously, M has no radial component, and for sufficiently large kr the
radial component of N for the scattered field is negligible compared with the
transverse component.

We have shown in Fig. 42 how the functions j, and y, behave, and the
functions sin ¢, cos ¢ are well known. Thus, it only remains for us to show the
behavior of the functions 7, and 7,, which determine the 6 dependence of

the fields. Polar plots of 7, and 7, for n = 1-5 are shown in Fig. 4.3; these
plots are more pleasing to the eye if we allow 8 to range from 0 to 360°. Note

7, O : ()'wI

90° -

72 é ¢
T3 90
180"
T4 8
1T5
75
Figure 4.3 Polar plots of the first five angle-dependent functions =, and 7,. Both functions arc
plotted to the same scale.
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Table 5. The range [Nnin’ Nmax] of the number of terms in the Mie

series, as a function of size parameter x. The range was ﬁ
determined by varying Re(m) from 1.05 to 2.50 and Im(m)
WisemRE,
from 0 to 1 in small steps. /
19
X Nmin:- Nmax X Nﬁin'e Nmax NC
Tedn -MO‘I‘Q
0.1 2-3 3,000 3,052-3,058
|40 +STR
0.3 3-3 6,000 6,068-6,074
1 5=5 8,000 8,076-8,080
3 8-9 10,000 10,081-10,087
10 18-20 12,000 12,086-12,092
33 44-47 14,000 14,090-14,097
100 ‘ 117-120 - © 16,000 16,087-16,101
333 '357-362 18,000 18,094-18,105
1,000 - 1,038-1,041 20,000 20,102-20,108
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m close to 1 but even for S..Fo.a of m as largeas 2. Thisis brought

only for
out in Fig. 32, where the extinction curvés for m = 1.5, m = 1.33,

m = 0.93, m = 0.80, and m —> 1 are plotted with a eommon scale of p.

X—

.____.__________.________p_

g 5 10 15 20 25 30]
3l m=lte N
\\\\'//I
1,7 // ==~
ﬁ 2 \\\\ ‘\IO/W—.// \\\ /\IVI
Q / m=08 N\ m=093" "
A
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4
o_._________________
5 10 15 20
tlnu_ilu_

Extinction curves computed from Mie’s formulse for m = 1.5,

1.33, 0.93, and 0.8. The scales of z have been chosen in such a manner
that the scale of p = 2z|m — 1| is common to these four curves and
to the extinction curve for m = 1+e.

The scale of p at the bottom holds for all five graphs. The corresponding
scales of z depend on m. Form = 1.05 or 0.95 the range shown in the
figure corresponds to the range of z from 0 to 200.

The most striking feature is the existence of a sequence of maxima and
minima. The maxima occur when the term — —iesin 7 ephances the term

Fig. 32.
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Fig. 12.7: Plots of Mie-derived phase functions p(®) for various values of x, assum-

ing m = 1.33 (fine-

out by allowing x

scale oscillations in the curves for large x have been smoothed
to vary over a narrow range). The vertical scale is logarithmic

but otherwise arbitrary; each curve has been displaced upward from the previ-
ous one for clarity. Note increasing asymmetry and complexity of phase functions
with increasing x. The topmost curve (x = 10,000) is very similar to that predicted
by geometric optics except for the narrow forward and backward peaks at 0° and
180°. See Figs. 12.8 and 12.9 for polar plots of some of these same curves.
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LIGHT SCATTERING IN PLANETARY ATMOSPHERES

- JAMES E. HANSEN and LARRY D. 'TRAVIS
Goddard Institute for Space Studies, New York, N.Y. 10025, U.S.A.

(Received 15 May, 1974)

bstract. This paper reviews scattering theory required for analysis-of light reflected by: planetary:
atmospheres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates

the dependence of single-scattered radiation on the physical properties of the scatterers. ‘Section 3
Hescribes several methods to compute the effects of multiple scattering on the reflected light. =~

7
10 e e ke L T Ry T el i s Ehat re
e =1.33 n, =150 i
- -— GEOMETRICAL s !
10 OPTICS gs%ss'rmcu <
——— MIE THEORY MIE THEORY

‘05 ,
E- pr
10° ., ar
] :
£ 10° 3 Fe
z E ci
T . E Cl
| U | 3
w 10 3
g E la
z 3
10 - fr
Ly, R ] T, T - g1
- ra
107 ‘i E
|o°2 Y n okt WU L PUNE S 1 . 1 L 1 5 3 ﬁl
(o] 40 80 120 160 O 40 80 120 160 3
SCATTERING ANGLE . SCATTERING ANGLE E tie
100 [y . - :
ne=1.33 s n,-l.‘.’ao l : T . Hl
80 | ---- GEOMETRICAL ! ---- GEOMETRICAL i 3
OPTICS { OPTICS S - al
~—— MIE THEORY | ——— MIE THEORY 3
60 | | ]
i : al
40 | ' e 40
! E t
20 b i ]
4
G o ¢
i 8
540
x S€
§zo S
" re
£ o %
] ] (
a0t (
i n
20t o
o N B 0N ] = a
-20 1 a
L L ' TR JONU S| : it 1 1 1 L 1 L n
0 40 80 120 60 O 40 80 120 . 160
SCATTERING ANGLE ] SCATTERING ANGLE . a

Fig. 5. Comparison of geometrical optics and Mie theory. The phase function (upper figure) and

percent polarization (lower figure) are for single scattering of unpolarized light: by spheres.. Results

.are shown for two real refractive indices and three values of xetr, which is the effective size parameter

for the size distribution (2.11). For the phase function the scale applies to the curves for Xetr =600,
the other curves being successively displaced upward by a factor of 100. ~ -
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The curve b=0 in Figure 8 gives Q,, for a single particle, as a function of x=2xnr/A.
This curve is characterized by a series of major maxima and minima of wavelength
~10 in x and superimposed ‘ripples’ of wavelength ~0.8 in x. The major maxima
and minima are due to interference of light diffracted (/=0) and transmitted (/=2)
by the particle, these two components making up ~95% of the scattered light (Figure
4). The phase shift for a light ray passing through the sphere along a diameter is
0=2x(n,—1). Thus constructive (or destructive) interference occurs successively at
intervals ~2mn in g, or ~9.5 in x for n,=1.33. The curves of Q,., for other values of
n, are qualitatively similar if graphed as a function of g, as shown in Figure 32 of van
de Hulst (1957).

The ripple on the Q,, curve for a single particle arises from the last few significant
terms in the Mie series, (2.42), as demonstrated by Bryant and Cox (1966). According
to the localization principle these terms arise from edge rays, i.e:, from the light rays
grazing the sphere. These rays set up surface electromagnetic waves which travel
around the sphere spewing off energy in all directions. Since there are focal points at
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—0° and o= 180° the main effect of the surface waves is noticed in these directions.
At o= 180° the surface waves give rise to an enhanced intensity which contributes to
the glory, and is the main cause of the glory for cases in which there is no contribution
from geometrical optics. At «=0° the intensity due to surface waves is small compared
to the intensity of diffracted light. However the diffracted radiation and the radiation
arising from the surface waves optically interfere, causing the ripples in the extinction
curve. van de Hulst (1957) and Bryant and Cox (1966) suggest different phenomeno-
logical models to explain the wavelength of the ripple. In the model of van de Hulst
the surface waves are assumed to take short cuts by jumping through the sphere; in
the model of Bryant and Cox it is assumed that the surface waves are only slightly
damped, i.e., that they involve hundreds of circumvolutions. Numerical results
presented below for absorbing spheres suggest that the model of van de Hulst may be
the closer to reality. '
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Fig. 8. Efficiency factor for scattering, Qsca, as a function of the effective size parameter, 2zzafA. The
standard size distribution (2.56) was used with four values of the effective variance b. For the case
' b =0, 2na/A = 2zr/A = x. The refractive index is n, =1.33, ni = 0.
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Figure 8 demonstrates that even a small dispersion of sizes* washes out the ripple
in Q,.,. However the first major maximum persists to large values of b, so its effect
must be noticeable in many cases. One example is an increase of atmospheric extinc-
tion with increasing wavelength (‘anomalous extinction’) which is sometimes observed
(e.g., Porch et al., 1973). This must be due to extinction by atmospheric aerosols with
0.5~ 5. The magnitude of the effect can serve as a rough measure of the width of the

size distribution.
Figure 9 illustrates that both the ripples and the major maxima and minima damp
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Fig. 9. Efficiency factor for scattering, Osca, as a function of the size parameter x =2nar/A. The
refractive index is nr = 1.33, with results shown for four values of ni.

* perr is ~0.06-0.08 for the size distributions measured for particles in the stratosphere (the Junge
layer) by Friend (1966) and Mossop (1965); it is ~0.10-0.20 for the distributions measured by Diem
(1948) for water clouds, but values as large as ~0.5 were found by Weickmann and-aufm Kampe

(1953), whose measurements included larger particles than those sampled by Diem; vetr is ~0:5-20
for the typical size distributions found by Junge (1963) for tropospheric aerosols.
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Fig. 10. = Single scattering albedo, @, as a function of the imaginary part of the refractive index, ni.
The solid curves are for b=0, corresponding to a single particle so 2na/A = 2nr{A =x. The real
refractive index is nr = 1.33.

out as absorption within the particles increases. In geometrical optics the intensity of
a light wave traversing a diameter of the sphere is decreased by the factor* e 4™,
and thus the major maxima and minima are significantly damped for 4xn;~1. The
ripples damp out at a value of xn; which is smaller, but not smaller by orders of mag-
nitude. This is consistent with van de Hulst’s (1957) model for the surface wave in
which only a few circumvolutions of the sphere are involved. '

Figure 9 also shows that as n; increases Q... for large particles first decreases,
reaches a minimum, and then increases. As n; becomes large Q,., approaches the value
for a perfect reflector, i.e., Qyca— 2 (cf., 2.10).

The dependence of the single scattering albedo & on x and n, is illustrated in Figure
10 for n,=1.33. The solid curves are each for a single particle of a given size parameter.

* In traveling a distance z the amplitude of the electric field varies as e~tkzne=g-tkz(nr—in) and thus

- the intensity is proportional to e~2kzn«,
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For large x and not too large n;, @ approaches ~0.53. This can be understood from
Figure 4; for ni=0;50% of the scatﬂt{erécl ‘101%}.}% iQs&d'ﬁraCted, 3.3%, is reflected and the
remainder is refracted into the particle, Aslong as n; 1§ small this division of the rays
remains approximately correct, and for large particles the refracted light is absorbed
within the particle even for small n;. As x becomes small & takes on values less than
0.5, a result of the fact that the Rayleigh region is being approached (cf., 2.19 and 2.20).
The dotted curves in Figure 10 are for a size distribution of significant width,
b=0.10 (cf., Figure 7). For x=1 and x=5 there is a non-negligible dependence of &
on b, as would be expected. However, for x> 10 & is practically independent of the
width of the size distribution. Thus for particles this large only one parameter, r,
is required to define the effect of the particle size distribution on.@. This is a result
of our choice of parameters; for example, it can be shown that two different distribu-
tions with the same mode radius or the same mean radius in general have considerably
different values of @.
The asymmetry parameter {cosa) is graphed in Figure 11 as a function of x .=
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Fig. 11. Asymmetry parameter, <cosa), as a function of the effective size parameter, 2na/A. The Fij
standard size distribution (2.56) was used with four values of the effective variance b. For the case 7 are
b =0, 2ra/A = 2ar/A = x. The refractive index is nr = 1.33, m;=0. - £




om
the
ays
bed
han
20).
dth,
of @
"the
Tests
sult
ibu-
ably

eff =

‘A. The
1e case

T e

LIGHT SCATTERING IN PLANETARY ATMOSPHERES 555

2nafA for the size distribution (2.56). The refractive index is n,=1.33. For small
particles {cosa) approaches zero, the value obtained for Rayleigh scattering. For
large x {cosa) approaches the result which is obtained with the geometrical optics
phase function, ~0.87 (van de Hulst, 1957). The maxima and minima in {cosa) have
the same physical origin as those in Q,, discussed above. {cos o) is thus dependent
on x4 and v The dependence of {cosa) on higher moments is small provided
x> 10. For the range of v.q typical of terrestrial clouds the dependence of {cosa)
on v.g is negligible, at least for the range of x.s appropriate for the visible and near-
infrared regions.

Figure 12 shows the asymmetry parameter for different real refractive indices. The
size distribution is (2.56) with 56=0.07, which is sufficient to smooth out all maxima
except the primary interference maximum (cf., Figure 8). This maximum in {cosa)
corresponds to a maximum in Q,,, since this feature is a result of constructive inter-
ference in the forward direction. For the larger values of refractive index {cosa)

LI
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Fig. 12. Asymmetry parameter, (coéa), as a function of effective size parameter, 2na/A. Results

are shown for five values of the real refractive index, #r, all with n; =0. The standard size distribution

(2.56) was used with b=10.07.
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deviates more readily from its zero value for Rayleigh scattering, as expected. At
2na/A=100 the limit of {cosa) for geometrical optics has nearly been reached; e.g.,
for n,=1.33 the phase function for geometrical optics yields {cosa) ~0.87. The gra-
dual increase in {cosa) as it approaches its limiting value is due in large part to the
~ decreasing width of the diffraction lobe of the phase function. As n,— 1, {cosa) — 1
for large 2nafA, since n,=1 corresponds to no scattering at all. On the other hand, as
n,— o, {cosa) — 0.5 for large 2na/A, because half of the scattered radiation is diffrac-
ted in the forward direction and half is reflected isotropically (cf., 2.10).

Figure 13 illustrates the effect of the imaginary part of the refractive index on {cosa).
For x.g=1000 as n; increases {cosa) first increases from its geometrical optics value
for n;=0 (~0.87); this increase is a result of absorption of rays refracted into the
particle. At n;=0.001 the absorption of refracted rays is essentially complete since in
traversing a particle diameter the reduction in intensity is the factor e~ 4*" =¢~4. Thus
only diffraction and reflection contribute and {cosa) ~0.94x 1+0.06 x?}=0.97,
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Fig. 13. Asymmetry parameter, {cosa), as a function of the imaginary part of the refractive index,

ni. The solid curves are for b =0, corresponding to a single particle, so 2na/A = x. The real refractive
index is nr =1.33.
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P11, and percent polarization, —100P2/P11, for single scattering of un-

polarized incident light. Results are shown for the four size distributions illustrated in the inset. The’
standard gamma distribution is the same as in Figure 14. All four distributions have 7=0.5 and

0% =0.125 p2, where 7 is the mean radius and

o2 the variance. The calculations are for the real refrac-
tive index n, = 1.33 and wavelength A=0.55 u.
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1. Introduction

The microphysics of clouds is generally assumed to be
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Multiple Scattering of Polarized Light in Planetary Atmospheres.
Part II. Sunlight Reflected by Terrestrial Water Clouds

JaMes E. HANSEN
Goddard Institute for Space Studies, NASA, New York, N. Y.
(Manuscript received 3 August 1971, in revised form 23 August 1971)

ABSTRACT

The intensity and polarization of sunlight reflected by terrestrial water clouds are computed with the
doubling method. The calculations illustrate that this method can be effectively used in problems involving
strongly anisotropic phase matrices. The method can therefore be used to derive information about plane-
tary clouds, including those of the earth, from polarimetric observations.

The results of the computations indicate that the polarization is more sensitive than the intensity to
cloud microstructure, such as the particle size and shape. Multiple scattering does not wash out features
in the polarization as effectively as it does in the intensity, because the polarization arises primarily from
photons scattered once or a small number of times. Hence polarization measurements, particularly in the near
infrared, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds.

The computations are made primarily at four wavelengths in the near infrared, from 1.2 to 3.4 u. The
results for A=1.2 i are also applicable to scattering at visual and ultraviolet wavelengths. The other wave-
lengths are selected to illustrate the basic scattering characteristics in the near infrared for reflection of
sunlight from water clouds.

It is shown that the intensity computed with the exact theory including polarization differs by S 1.05¢
from the intensity computed in the common scalar approximation in which the polarization is neglected.
Therefore, when only the intensity is required, and not the polarization, it is possible in most cases to neglect
polarization entirely.

An approximation obtained by setting the phase matrix elements P*(a) and P#(a) equal to zero is pro-
posed and tested. It is found that this introduces errors less than one part in 10¢ for the intensity and errors
<0.0002 in the degree of polarization. This means that in computing the polarization properties for multiple
scattering by spherical particles it is usually adequate to work with 3 by 3 matrices.

An examination is made of the accuracy of the polarization in the approximation in which it is assumed
that multiply scattered photons are unpolarized. A modified version of this, which, in addition, takes
advantage of the fact that diffracted light is nearly unpolarized, is also tested. The modified approximation
is found to yield an improved accuracy in most cases.

Another approximation, which can be termed a renormalization method, is described and tested. The method
consists of modifying the phase matrix for single scattering so that the integrations over zenith angle can be
performed with a small number of points. The order of the approximation (the number of zenith angles in the
integrations) can easily be varied and accuracies sufficient for practical applications can be obtained at low
orders of approximation. The method is therefore useful for smail computers.

prediction.

of clouds could be of significant value for weather

intimately connected with the general dynamic and
thermodynamic processes in individual cloud bodies, as
well as with the synoptics of entire weather systems. An
improved understanding of the relations of the micro-
physics to the meso- and macrophysics is essential to
the sciences of both weather prediction and weather
modification.

Methods of remotely sensing cloud particle phase
and size distribution are needed to help relate the
microstructure to the cloud type. Furthermore, with an
understanding of these relations in hand, it is possible
that measurements from satellites of the microstructure

Active methods of remote sensing, for example with
radar or lasers, can be used for investigating local
cloud systems. However, to obtain information over
a wide geographic area with a satellite-borne sensor, it
is desirable to use reflected sunlight as the probe. It
has already been shown (Blau e al., 1966; Hovis and
Tobin, 1967; Hansen and Pollack, 1970) that some
information on the cloud microstructure can be ob-
tained by observing the intensity of reflected sunlight
in the near infrared. It is likely that the polarization of
reflected sunlight is more sensitive than the intensity to
cloud microstructure. This paper represents one step
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Improved Mie scattering algorithms

W. J. Wiscombe

Scattering of electromagnetic radiation from a sphere, so-called Mie scattering, requires calculations that
can become lengthy and even impossible for those with limited resources. At the same time, such calcula-
tions are required for the widest variety of optical applications, extending from the shortest UV to the lon-
gest microwave and radar wavelengths. This paper briefly describes new and thoroughly documented Mie
scattering algorithms that result in considerable improvements in speed by employing more efficient formu-
lations and vector structure. The algorithms are particularly fast on the Cray-1 and similar vector-process-

ing computers.

I. Introduction

Mie scattering calculations pervade the entire field
of atmospheric optics. Applications range from one end
of the electromagnetic spectrum to the other—from UV
solar radiation backscattered by stratospheric aerosols
to satellites, through visible and IR radiation scattered
by clouds and aerosols, to microwaves and radar scat-
tered from large hydrometeors.

The actual formulas for Mie scattering are well
known.1?2 The quantities required are

2 N
Qext = Y > (2n+ 1)Re(a, + by), (1a)
X n=1
9 N
Qsca":';'z' > (2n+ 1)(lan|2+ lbnlz), (1b)
n=1

4 N [nn+2)

7 szsca n=1 l n+1 Re(a"a;ﬂ»l + bnb;..ﬂ)
2ntl @bl o
n(n+1)
N 2n+1
S = nTn +b,7n , 1d
1(u) ngxn(n+ m [anmnp) am (1d)
N +1
So(u) = 2ntl [anTn(p) + bamn(w)], (1e)
n=1n(n+1)

which are, respectively, the extinction efficiency, scat-
tering efficiency, asymmetry factor, and complex scat-
tering amplitudes for two orthogonal directions of in-
cident polarization. (|S;|2and |S|? are the scattered

The author is with National Center for Atmospheric Research,
Boulder, Colorado 80307.
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intensities.) Size parameter x is the sphere’s circum-
ference divided by the wavelength. The complex-val-
ued Mie coefficients a, and b,, depend on x and on the
complex refractive index m = mge — immm. They are
expressed in terms of spherical Bessel functions; in
particular, following Infeld’s formulation,? they involve
the function

An(mx) = Y, (mx)/Yn(mx), 2)

where Y, (2) = zj,(z). Finally, p is the cosine of the
scattering angle, and the angular eigenfunctions are

Ta(p) = Po(p), ®)
7o (R) = pma(p) — (1 — pd)w,(p), 4)

where P, is a Legendre polynomial.

The only remaining question is how to structure the
Mie computation for maximum efficiency, while at the
same time maintaining accuracy and avoiding numerical
instability and ill-conditioning. The first published
Mie algorithms were those of Dave*® although Irvine,
Plass, and Cheyney, to name just a few, had been doing
Mie calculations for several years prior. Most new in-
vestigators in the intervening years tended to use Dave’s
algorithms or variants thereof.

Mie calculations have gained a reputation for being
time-consuming. This is, first, because the upper limit
N in Egs. (1) is roughly equal to x, which can become
very large, e.g., about 1260 for a 100-um water drop at
a visible wavelength of 0.5 um. Second, because in
typical applications one wishes to sum these series for
a large number of radii (as in integrating over a size
distribution) or for a large number of wavelengths (as
in integrating across the solar spectrum) or for a large
number of refractive indices (as in inverting scattering
measurements to deduce refractive index). The present
author alone has used many hours of Univac 1108, IBM
360/91, CDC 7600, and Cray-1 time doing Mie compu-
tations.

1 May 1980 / Vol. 19, No. 9 / APPLIED OPTICS 1505
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Efficiency Factors in Mie Scattering

H. M. Nussenzveig® "
Cooperative Institute for Research in the Environmental Sciences, Boulder, Colorado 80309, and National
Center for Atmospheric Research, Boulder, Colorado 80307

and

W. J. Wiscombe
National Center for Atmospheric Research, Boulder, Colorado 80307

(Received 22 May 1980)

Asymptotic approximations to the Mie efficiency factors for extinction, absorption, and
radiation pressure, derived from complex—angular-momentum theory and averaged over
AB ~r (3 =size parameter), are given and compared with the exact results. For complex
refractive indices N=n +i k with 1.1 S» <2.5 and 0 Sk <1, the relative errors decrease
from ~(1-10)% to ~(1072-10"%% between 8 =10 and 8 =1000, and computing time is re-
duced by a factor of order 3, so that the Mie formulae can advantageously be replaced by

the asymptotic ones in most applications.

PACS numbers: 42.20.Gg, 42.68.Vs

The Mie efficiency factors® for extinction (Q.,.),
absorption (Q,,), and radiation pressure (Qn)
are just the corresponding cross sections divided
by the projected area na® of the scattering sphere.
These quantities are important in many applica-
tions. Typical size parameters g =ka (¢ =wave
number, g =droplet radius) range from « 1 up to
~ 10%, with complex refractive indices N =n +ix,
1.1s2<1.9, 10"°sk<1. The efficiencies vary
extremely rapidly® with 8, n and k; but in most
applications one is only interested in means (Q)
over some range Ag, not in this high-frequency
“ripple.”

Evaluation of the exact Mie expressions? re-
quires summing ~ g partial waves. Upon integra-
tion across size or wavelength with a step fine
enough to resolve the ripple (A8 <0,01-0.1), one
is faced with exorbitant computation times. Ap-
proximations® based on geometrical optics and

- classical diffraction theory do not have the re-

quired accuracy until 8 exceeds several thousand
(cf. below). Clearly, better approximations, de-
void of ripple, are needed.

The complex-angular-momentum theory of Mie
scattering® can furnish such approximations. By
a simple extension of previously developed tech-

1490 © 1980 The American Physical Society




Algorithms for the calculation of scattering by

stratified spheres

Owen B. Toon and T. P. Ackerman

Efficient, numerically stable, methods for the calculation of light-scattering intensity functions for concen-
trically coated spheres are discussed. Earlier forms of these equations are subject to various numerical dif-
ficulties which give rise to significant errors, especially for thin absorbing shells. The present equations are
accurate for all refractive indices, for large and small particles, and for cores with any relative size.

I. Introduction

Theoretical expressions describing the light scattered
by a particle composed of a spherical core surrounded
by a concentric shell were developed many years ago by
Aden and Kerker! and have been discussed in detail by
Kerker.?2 Investigators have encountered several nu-
merical problems using these equations, which we at-
tempt to overcome in this paper.

Espenscheid et al.3 found that the use of upward re-
cursion to evaluate the Bessel functions which appear
in Kerker’s equations produced large errors. Kattawar
and Hood? found that the higher-order terms in the
expansions for the scattered radiation field were subject
to error because one must subtract large nearly equal
terms which can result in a numerically meaningless
remainder. Ackerman and Toon,® who studied scat-
tering by particles slightly larger than the wavelength
of light, which were covered by thin carbon shells, found
that even the first term in the expansion for the scat-
tered radiation field could be numerically invalid be-
cause of the subtraction of large quantities to obtain a
smaller one. In addition to these problems, Kerker’s
equations contain spherical Bessel functions whose
magnitude increases exponentially with their argument
and may easily exceed the capacity of modern com-
puters. To circumvent these various difficulties, we
have reformulated Kerker’s? equations using many of
the same techniques employed to prevent similar
problems which arise in the equations for scattering by
homogeneous spheres.2

We shall first describe the equations we use to cal-
culate the scattered radiation field and discuss their

The authors are with NASA Ames Research Center, Space Science
Division, Moffett Field, California 94035.
Received 11 April 1981.

numerical stability. Then we present the schemes we
use to find the various terms which appear in the
equations and illustrate the numerical stability of these
schemes. Finally, we describe the checks we have
performed to be certain that our complete computer
code is numerically stable and accurate.

Il. Computational Equations

The scattered radiation field is completely deter-
mined by a series of coefficients which Kerker2 denotes
by a, and b,. For example, the extinction coefficient
is given by

Qexe = (%) % (2 + D{Re(an + bn)], (1)
Qa“l n=1

where «, the size parameter, is the product of = and the
ratio of the particle diameter to the wavelength of light.
The symbol Re denotes the real part of the complex
quantity a, + b,.

Kerker’s equations for a, and b,, contain three Ri-
catti-Bessel functions and their derivatives. To obtain
a numerically stable form of Kerker’s equations, we

performed four operations. First, we divided all the "

equations by the appropriate terms to replace the Ri-
catti-Bessel functions with their logarithmic derivatives.
This technique, long used in standard Mie theory, cir-
cumvents the exponential dependence of the functions
on size parameter. Second, we formed ratios of the
terms in the equations which could not be expressed as
logarithmic derivatives, so that the ratios are bounded
as the size parameter becomes large and as the core size
becomes small. Third, we eliminated many of the Ri-
catti-Bessel functions by using the fundamental rela-
tions between them. Most of the problems in the

“original equations due to the subtraction of large terms

to leave a small residual were caused by twd Ricatti-
Bessel functions converging to similar values. Ana-
lytically expressing the Bessel functions in terms of each
other eliminates these problems. Finally, to calculate

15 October 1981 / Vol. 20, No. 20 / APPLIED OPTICS 3657
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ABSTRACT

Effective-medium theories yield effective dielectric functions (or, equivalently, refractive indices) of composite 2 iy
media. Such theories have been formulated that go beyond the Maxwell-Garnett and Bruggeman theories, which i -0
are restricted to media composed of grains much smaller than the wavelength. These extended effective-medium W
theories do not, however, yield effective dielectric functions that can be used for the same purposes for which : |
we unhesitatingly use the dielectric functions of substances such as pure water and pure ice (e.g., reflection and ‘
transmission by smooth interfaces; absorption and scattering by particles). Extended dielectric functions can
lead to unphysical results; for example, absorption in composite media with nonabsorbing components. Moreover,
if the grains in composite media are large enough to give rise to magnetic dipole and higher-order multipole
radiation, then the effective permeability of the composite medium cannot be taken to be that of free space
even if the grains are nonmagnetic.

Recently, extended effective-medium theories have been applied to the problem of determining the effective
dielectric function of ice in which soot grains are embedded in order to explain a factor of 2 discrepancy between
measurements of the albedo of soot-contaminated snow and calculations based on a snow albedo model. Setting
aside questions about the applicability of these theories, reasonable alternative explanations for the discrepancy
exist: (i) Soot is not an invariable substance; measured refractive indices of carbonaceous materials vary appre-
ciably, especially the imaginary part (about a factor of 5). (ii) Absorption by a small soot particle depends on

_its shape, varying by as much as a factor of 2. (iii) Absorption by a soot particle may be enhanced by porosity;
for a fixed particle volume, the enhancement is roughly proportional to the porosity. To predict exactly how
much a given amount of soot reduces the visible albedo of snow requires, therefore, more detailed information
about the soot than is likely to be readily obtainable.

1. Introduction out steadily, some with solid theoretical foundations,
others based on no more than empirical fits to limited
sets of data. There is now a bewildering array of them
in the scientific literature, although sometimes the dif-
ferences among them are more apparent than real (e.g.,
see Bohren and Battan, 1980). Two of these, the Max- PRI
well-Garnett (1904) and the Bruggeman (1935) theo- AR
ries, have had the widest use. TR

According to both the Maxwell-Garnett and the
Bruggeman theories, the effective, or average, dielectric
function e,, of a two-component mixture depends on
only the dielectric functions of its components and their
volume fractions: ‘

Some particles in the atmosphere are nonhomoge-
neous, which leads to questions about how one cal-
culates absorption and scattering by them. One ex-
ample is determining radar backscattering cross sec-
tions of melting snowflakes and spongy-ice hailstones
(Bohren and Battan, 1980, 1982; Battan and Bohren,
1982, Chylek et al., 1984a). In recent papers by Chylek
et al. (1983, 1984b) the particles considered are inho-
mogeneous by virtue of embedded soot grains. Since
interest in nonhomogeneous atmospheric particles
seems to be on the rise, the time has come for a critical
look at effective-medium theories. This is particularly
" important because, as will be shown, serious errors can
occur when effective-medium concepts are used un-

€av = Fle, 6m,f),

critically outside their limited domain of validity.

An example of an effective-medium theory is one
that gives the dependence of the effective dielectric
function of a two-component mixture on the dielectric
functions of the components and their volume frac-
tions. Such theories have a long history (Landauer,
1978) predating the publication of Maxwell’s A Treatise
on Electricity and Magnetism. Subsequently, effective-
medium theories (or mixing rules) have been turned
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where fand 1 — fare the volume fractions of the com-
ponents with dielectric functions ¢ and e¢,. In the
Bruggeman theory F is symmetric with respect to in-
terchange of the components, whereas in the Maxwell-
Garnett theory it is not:

Fe, €y, [) = Fle, €, 1 — f), Bruggeman

Fle, €m, [) * Flem, €, 1 — f), Maxwell-Garnett.
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